A Reference Architecture for Digital Engineering Environments Supporting Digital Threads and Digital Twins

26th Annual Systems & Mission Engineering Conference October 16-19, 2023

James E. Coolahan, Ph.D.

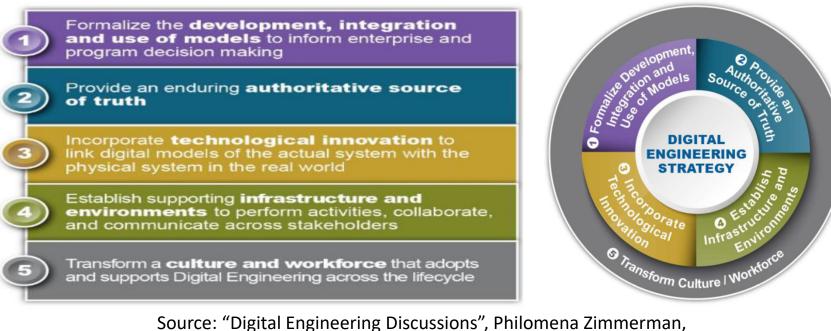
Coolahan Associates, LLC 3013 Boones Lane Ellicott City, MD 21042 +1 410-440-2425 jim@coolahan.com

Approved for Public Release

26th Annual Systems & Mission Engineering Conference

Presentation Outline

- Digital Engineering Strategy Goals and Relevance
- Some Historical Examples of Collaborative Environments for Modeling & Simulation
- Reference Architecture for a Digital Engineering Collaborative Environment
 - Top-Level View
 - The Three Layers
 - The Two Overlays
- Illustrating Digital Threads Using the Reference Architecture
- Relationship of Digital Twins to the Reference Architecture and Digital Threads
- Summary



2

Digital Engineering Goals

• Digital Engineering: An integrated digital approach that uses authoritative sources of systems' data and models as a continuum across disciplines to support life cycle activities from concept through disposal.

Source: "Digital Engineering Discussions", Philomena Zimmerman, NDIA Systems Engineering Division, May 2019

Digital Engineering Goals That Are the Focus of This Presentation

Formalize the **development**, integration and use of models to inform enterprise and program decision making

Provide an enduring authoritative source of truth

Incorporate **technological innovation** to link digital models of the actual system with the physical system in the real world

Establish supporting **infrastructure and environments** to perform activities, collaborate, and communicate across stakeholders

Transform a **culture and workforce** that adopts and supports Digital Engineering across the lifecycle

Digital Engineering Strategy Goal 2: Provide an Enduring Authoritative Source of Truth

- Provide an enduring authoritative source of truth
 - 2.1 Define the authoritative source of truth
 - Plan and develop the authoritative source of truth
 - 2.2 Govern the authoritative source of truth
 - Establish access and controls for the authoritative source of truth
 - Execute governance of the authoritative source of truth
 - 2.3 Use the authoritative source of truth across the lifecycle
 - Use the authoritative source of truth as the technical baseline
 - Use the authoritative source of truth to produce digital artifacts, support reviews, and inform decisions
 - Collaborate and communicate using the authoritative source of truth

5

Digital Engineering Strategy Goal 4: Develop a Supporting Infrastructure and Environments

- Develop a supporting infrastructure and environments to perform activities, collaborate, and communicate across stakeholders
 - 4.1 Develop, mature, and use digital engineering IT infrastructures
 - Provide hardware and software to perform digital engineering activities
 - 4.2 Develop, mature, and use digital engineering methodologies
 - Develop, mature, and implement methods and processes to support digital engineering activities across the enterprise and lifecycle
 - Develop, mature, and implement digital engineering tools
 - 4.3 Secure IT infrastructure and protect intellectual property
 - Protect intellectual property while using models to collaborate throughout a program lifecycle

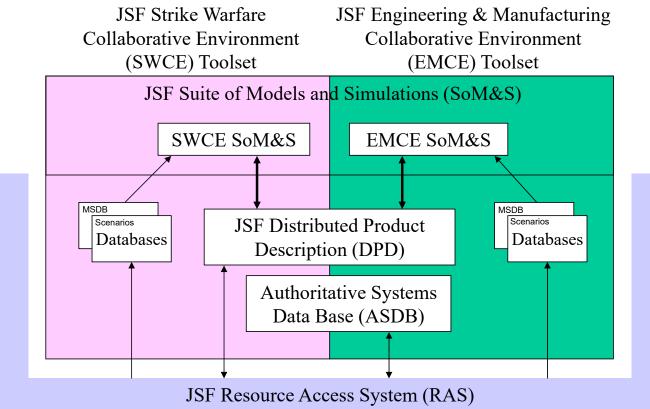
Digital Engineering Strategy Goal 4: Develop a Supporting Infrastructure and Environments

Goal 4.1: Digital engineering IT infrastructures include a collection of hardware, software, networks, and related equipment. They span geographical locations and organizations, and they must satisfy security requirements. ...

Source: Digital Engineering Strategy, June 2018

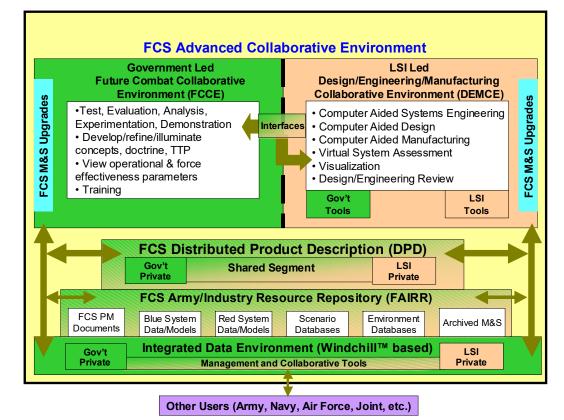
A Sample Reference Architecture for a Collaborative Environment (source: SBA Roadmap, 1998)

User Environment								
User Interface	Viewe		Со	ntrollers	Web Browsers			
Protocols								
Application Environments De				velopment Environments				
Acquisition Support Tools								
Desktop	Program Mgt. Tools	Workflo Mgt. Too		Collaboration Tools	Simulations			
Federation Dev Tools	Parsers/ Translators	Desigr Tools		Static Anal. Tools	Intelligent Systems			
Services and Associated Application Program Interfaces (APIs)								
F	Resources	Infrastructure						
Distributed P	roduct Descri	Host	Networks/					
Product	Product	Process		Computers	Protocols			
	Models	Models		Encrypters/ Firewalls	Facilities			
Supporting Databases	Planning Documents	Policy/ Standard		Operating Systems	Distributed Data Services			
Federation Tool Resources Documentation			Distributed Sim Services	Frameworks				


Notes:

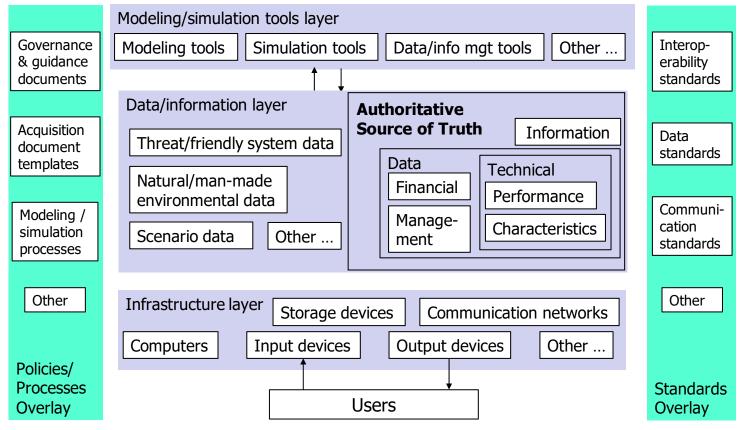
- Intended as an overall framework
- Every component type need not be represented in every Collaborative Environment

An Example Collaborative Environment Architecture – the Joint Strike Fighter (JSF) Program, 2000



Source: "The Joint Strike Fighter (JSF) Strike Warfare Collaborative Environment (SWCE)," in *Proc., 2000 Fall Simulation Interoperability Workshop*, Simulation Interoperability Standards Organization, September 17-22, 2000, Orlando, FL.

An Example Collaborative Environment Architecture – the Future Combat Systems (FCS) Program, 2001



Source: Defense Advanced Research Projects Agency (DARPA) Solicitation No. PS 0207, "DARPA / Army Future Combat Systems Program Solicitation," November 2001.

Associates, LLC

A Collaborative Environment Centered on the Authoritative Source of Truth

Adapted from: "A System-Model-Centric Collaborative Environment for the Acquisition Lifecycle," J.E. Coolahan and J.J. Bergenthal, 2015 Interservice/Industry Training, Simulation & Education Conference, Nov.-Dec. 2015.

The Modeling/Simulation Tools Layer – Contents

 Modeling/simulation tools layer

 Modeling tools
 Simulation tools

 Data/info mgt tools
 Other ...

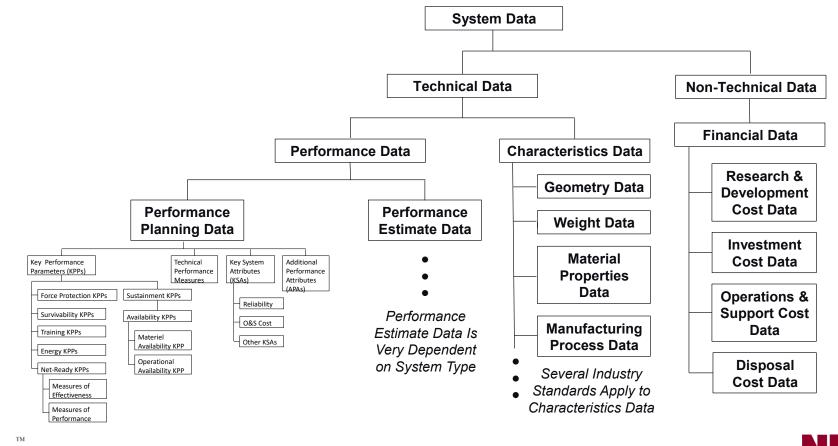
- Modeling tools (e.g., for Computer-Aided Design, manufacturing processes)
- Software-based simulations (e.g., for performance / effectiveness estimation, supportability)
- Hardware-in-the-loop simulations
- Data and information management tools (e.g., Product Data Managers, M&S tool catalogs)
- Simulation interoperability tools (e.g., High Level Architecture implementations)

The Data/Information Layer – Contents

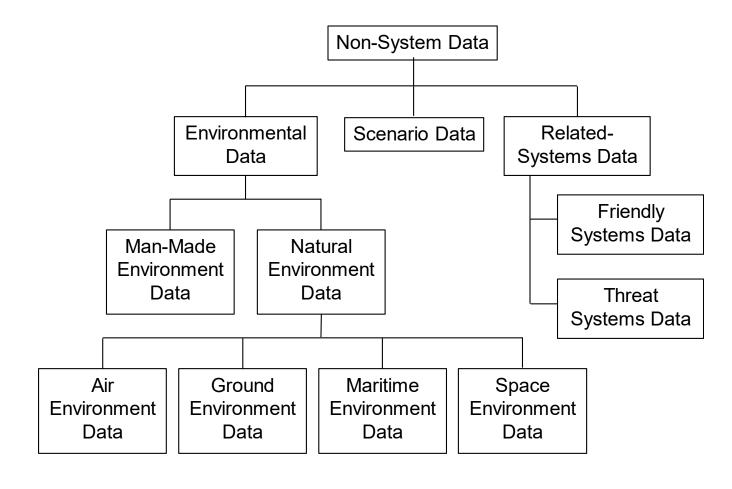
Data/information layer			Authoritative			
Threat/friendly system data			urce of Truth) 	Information	
Natural/man-made environmental data			Data Financial	Technical Performance		
Scenario data 0	ther		Manage- ment	Cha	aracteristics	

The Authoritative Source of Truth

- Information (e.g., documents on the system needed for acquisition)
- Authoritative data (many types; see next slide)
 - Will grow significantly over time
 - Likely to be physically distributed across government and contractors


"Non-System Data" (see slide after next)

• Threat/friendly systems, environment, scenarios


A Potential Top-Level Taxonomy for Data in an Authoritative Source of Truth

A Categorization of "Non-System" Data

Coolahan Associates, LLC

The Infrastructure Layer – Contents

- Computers
- Software
- Networks
- Special-purpose hardware

Infrastructure layer		Storage devices		Communication networks			
Computers	In	Input devices		Output devices			Other

The Policies/Processes Overlay – Contents

Governance & guidance documents Acquisition document templates Modeling / simulation processes Other Policies/ Processes Overlay

- Governance document(s) delineating organizational responsibilities for maintaining the collaborative environment components and elements
- Security guidance documents for classified elements of the collaborative environment
- Acquisition document templates
- Configuration management processes for the Authoritative Source of Truth and other elements of the data/information layer
- Verification, validation, and accreditation (VV&A) processes for elements of the modeling/simulation tools layer
- Distributed simulation systems engineering processes for simulation federations

The Standards Overlay – Contents

- Simulation systems engineering and interoperability standards
- Data standards for
 - System characteristics data
 - System performance data
 - Manufacturing data
 - Financial data
 - Environmental data
 - Scenario data
- Communication protocol standards
- Modeling and markup language specifications
- Process standards (may overlap with Policies / Processes Overlay)

26th Annual Systems & Mission Engineering Conference Approved for Public Release

Interoperability standards

Data

standards

Communication

standards

Other

Standards Overlay

Digital Thread and Digital Twin Definitions from the Defense Acquisition University (DAU) Glossary

- **Digital Thread**: An extensible, configurable and component enterprise-level analytical framework that seamlessly expedites the controlled interplay of authoritative technical data, software, information, and knowledge in the enterprise data-informationknowledge systems, based on the [Authoritative Source of Truth] template, to inform decision makers throughout a system's life cycle by providing the capability to access, integrate and transform disparate data into actionable information.
- **Digital Twin**: An integrated multiphysics, multiscale, probabilistic simulation of an as-built system, enabled by the Digital Thread, that uses the best available models, sensor information, and input data to mirror and predict activities/performance over the life of its corresponding physical twin.

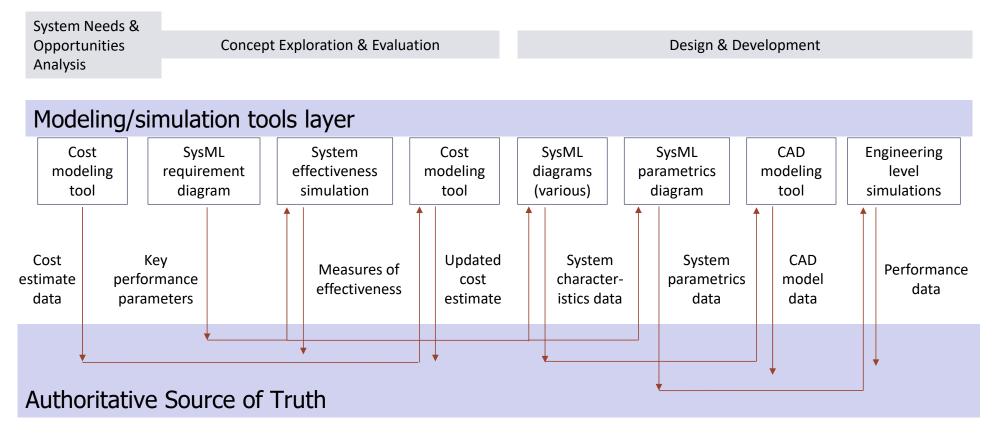
Alternate Definitions of a Digital Thread

The use of digital tools and representations for design, evaluation, and life cycle management. [1]

A data-driven architecture that links together information generated from across the product lifecycle. [2]

An integrated information flow that connects all the phases of the product lifecycle using accepted authoritative data sources, e.g. requirements, system architecture, technical data package, 3D CAD models, and project tasks. [3]

[1] USAF Global Science and Technology Vision Task Force. "Global Horizons Final Report". 2013.


[2] Singh, V. and Willcox, K. "Engineering with a Digital Thread". 2018.

[3] Bajaj, M. and Hedberg, T. "System Lifecycle Handler – Spinning a Digital Thread for Manufacturing". 2018.

The Digital Thread in a Collaborative Environment A Partial Example

Alternate Definitions of a Digital Twin

- A high-fidelity model of the system which can be used to emulate the actual system. [1]
- A digital twin is a virtual representation of an object or system that spans its lifecycle, is updated from real-time data, and uses simulation, machine learning and reasoning to help decision-making. [2]
- A digital twin is a digital representation of a real-world entity or system. The implementation of a digital twin is an encapsulated software object or model that mirrors a unique physical object, process, organization, person or other abstraction. [3]
- ... and many more.

[1] Guide to the Systems Engineering Body of Knowledge. https://www.sebokwiki.org/wiki/Digital Engineering

- [2] IBM website, <u>https://www.ibm.com/topics/what-is-a-digital-twin</u>
- [3] Gartner website, <u>https://www.gartner.com/en/information-technology/glossary/digital-twin</u>

A Proposed Definition of a Digital Twin

- Premise: No single model, simulation, and/or dataset can represent all characteristics and performance measures of a major system that will meet the needs of all stakeholders.
- Proposed definition: A digital twin is a unified consistent set of models, simulations, and data that represents all of the characteristics and performance measures of a system at a particular point of time in the lifecycle of a system at a sufficient fidelity to meet the needs of all stakeholders of the system.
- Examples:
 - For a mechanical engineer designer of a system, the digital twin is a representation of the form and fit of all components, and related tolerances, of a system at a particular point of time in the lifecycle of the system.
 - For a performance evaluator of a system, the digital twin is a representation of the functional performance of the entire system at a particular point of time in the lifecycle of the system.

Summary

- A goal of the DoD Digital Engineering Strategy is to develop a supporting infrastructure and environments.
- A working definition of a collaborative environment for system acquisition has existed since at least 1998.
- Elements of a collaborative environment include a purpose, people, tools, standards, and processes.
- A Digital Engineering Collaborative Environment can be used to implement Digital Engineering concepts, including Digital Threads and Digital Twins.

