

11100 Johns Hopkins Road Laurel, MD 20723-6099

Understanding Modeling and Simulation (M&S) Workflows for Digital Engineering Transformation

NDIA 26th Annual Systems & Mission Engineering Conference

Risa Gorospe (risa.gorospe@jhuapl.edu) Shannon Dubicki (shannon.dubicki@jhuapl.edu)

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited

Session Agenda

- Session Objectives
- Digital Engineering with Modeling & Simulation (M&S)
- Background & Approach
- Representing M&S Workflow with Model-Based Systems Engineering (MBSE)
- Identifying Opportunities for M&S Workflow Improvement
- Some Additional Challenges
- Lessons Learned
- Looking Ahead

Session Objectives

- In this session, we will learn a little bit about:
 - An approach for architecting and understanding the interconnections between simulation models
 - Some MBSE modeling patterns to enable architecting of simulation models
 - Some tools within the Cameo software to query the simulation model architecture
 - Some additional challenges to architecting simulation model workflows
- We hope that you take away the following:
 - Architecting the simulation model enterprise can help to identify opportunities for workflow improvements
 - Using an MBSE approach to simulation model information can capture the details that enable discussions on simulation assumptions and reuse
 - Capturing the right information in an enterprise architecture enables the right discussions with the stakeholders

Digital Engineering with Modeling & Simulation (M&S)

- The use of models is core to digital engineering as described in the United States Department of Defense Digital Engineering Strategy in 2018:
 - Digital engineering is the *"integrated digital approach that uses authoritative sources of systems' data and models as a continuum across disciplines to support lifecycle activities from concept through disposal."* (DoD Digital Engineering Strategy, 2018)
- For some organizations, physics-based M&S is already core to the organization's enterprise
 - How can we improve an organization's M&S execution using digital engineering principles?
- A few principles that come to mind from the digital engineering definition alone:
 - Better integration of models
 - ("integrated digital approach ")
 - Better alignment of models to the authoritative sources of truth
 - ("uses authoritative sources of systems' data")
 - Better usage of models to support of the engineering lifecycle
 - ("to support lifecycle activities from concept through disposal")

Background & Approach

- A department within Johns Hopkins University Applied Physics Laboratory (JHUAPL) wanted to better understand the enterprise interdependencies between physics-based M&S
- We decided to capture the information using a model-based systems engineering (MBSE) approach
 - We captured the information using Dassault Systemes Cameo Systems Modeler 2022x in the SysML 1.7 language
 - We customized the modeling language (metamodel and profile) to better articulate the modeling concepts (e.g., <<Simulation Model>>, <<Analysis Effort>>, <<Program>>, etc.)
- We focused primarily on understanding the interconnections between simulation models within workflows
 - Addressing "Better integration of models"
 - We lightly explored additional relationships:
 - Analysis workflows to programs "Better usage of models to support of the engineering lifecycle"
 - Simulation models to the system design "Better alignment of models to the authoritative sources of truth"
- In this session, we will discuss the modeling patterns and some of the observations
 - All examples shown are notional for distribution (e.g., "Model A", "Workflow 1", etc.)

Defining Simulation Models

- Simulation models are defined as a custom SysML definition elements (<<Simulation Model>>)
 - Modified extension of a SysML block
- Simulation models have the following attributes:
 - Development Language Programming languages the model is coded in
 - Development Tool The development tools required to develop the model
 - Model Owner Organization or department that has ownership over the model
 - Model Subject The central topic that the model represents
 - Model Type Enumerated list of additional types for querying later (e.g., Compiled Software vs Custom Script)
- Interfaces on a simulation model are defined by SysML proxy ports typed by interface blocks

Defining an Analysis Workflow

- Analysis workflows are defined as a custom SysML definition elements (<<Analysis Workflow>>)
- Analysis workflows are composed of simulation models as parts
- Analysis workflows are expanded upon in a SysML internal block definition diagram to define the interconnections between model interfaces
- Connectors and item flows define the interface flow between simulation models within the workflow

Defining an Analysis Workflow (Continued)

- This modeling pattern enables the capture of a few different forms of reuse
 - Reuse of models across multiple workflows
 - Reuse of an interface with different connections (e.g., common file input format)
- Additional information can be applied to the workflow as needed
 - On interfaces (e.g., file interface vs. data connection)
 - On connectors (e.g., timing information)
 - On item flows (e.g., information sensitivity)
 - On part properties / model usage (e.g., Model B in the role of Sensor Y Model)
- The additional workflow information can be queried later

Model Data

Relationships to Additional Elements

- Additional concepts are also defined as custom SysML definition elements:
 - Analysis efforts (<<Analysis Effort>>) Defines an analysis task
 - Programs (<<Program>>) Defines the program funding the analysis task
 - Information system (<<Information System>>) Defines the information system that hosts the simulation model
- These concepts can have other additional information:
 - On analysis efforts (e.g., task lead, staffing information)
 - On programs (e.g., program manager, program state)
 - On information systems (e.g., hosting information)
- These concepts are related to the workflow using a custom dependency relation:
 - Analysis Efforts -> Analysis Workflows: <<Uses Workflow>>
 - Analysis Efforts -> Programs: << Supports Program>>
 - Simulation Models -> Information Systems: << On Environment>>
- These modeling patterns can be adjusted depending on the desired uses from the architecture stakeholders

Additional Concepts Example: Modeling Pattern around Workflow 1

«Program» Program X {Program Manager = "P. Manager"} «Supports Program» «Analysis Effort» Analysis Effort 1 Effort Lead = "J. Doe". Effort Status = In Progress, Organization of Lead = Department D «Uses Workflow» «Analysis Workflow» Workflow 1 «Simulation Model» «Simulation Model» «Simulation Model» Model A Model B Model C Development Language = C++, {Development Language = C++, (Development Language = MATLAB) Development Tool = Microsoft Visual Studio. Development Tool = MATLAB. Development Tool = Microsoft Visual Studio Model Owner = Department A. Model Owner = Department B. Model Owner = Department C. Model Subject = System A, Model Subject = Sensor Y, Model Subject = System C, Model Type = Compiled Software} Model Type = Custom Script} Model Type = Compiled Software} «On Environment» «On Environment» «On Environment» «Information System» «Information System» **IS X1 IS X2**

Identifying Opportunities for M&S Workflow Improvement

Filtering of Key Workflow Features

- The architecture content can be filtered to highlight specific workflow features
 - In Cameo, legend coloring and table diagram filtering can be used to focus on a specific feature
- Some examples of identifying potential workflow improvements from filtering:
 - Identifying manual model data movement that can be improved through automation
 - Identifying model data movement that have unique constraints that may need revisiting (e.g., information crossing different information systems)
 - Identifying opportunities for defining a common model interface and enabling reuse

Workflow Highlighting Example: Workflow 1 Interfaces Highlighted

Identifying Opportunities for M&S Workflow Improvement

End-to-End Traceability

- The architecture content also lays out a traceability pattern that can be interrogated
 - In Cameo, relation maps and table diagram custom columns can be used to highlight end-toend traceability
- Some examples of identifying potential workflow improvements from end-to-end traceability:
 - Identifying which programs are potentially affected by updates to a simulation model
 - Identifying which analysis efforts are potentially affected by downtime to an information system

End-to-End Traceability Example: Models to Programs (Detailed Table)

#	Name	Model Subject	Model Type	Development Language	Development Tool	Model Owner	Used in Workflow	Used in Analysis Effort	Supports Program
1	Model A	📙 System A	Compiled Software	C++	Microsoft Visual Studio	📙 Department A	Workflow 1	Analysis Effort 1	Program X
2	Model B	📙 Sensor Y	Custom Script	MATLAB	MATLAB	📙 Department B	Workflow 1	Analysis Effort 1	Program X
3	Model C	📕 System C	Compiled Software	📙 C++	Microsoft Visual Studio	📕 Department C	Workflow 1	Analysis Effort 1	Program X
4	Hodel D	📙 System D	Compiled Software	📕 Java	Eclipse	📕 Department C	Workflow 2	Analysis Effort 2	Program Y
5	Model E	📙 Sensor X	Compiled Software	C++	Microsoft Visual Studio	📙 Department B	Workflow 2	Analysis Effort 2	Program Y
6	Model F	📃 Sensor X	Custom Script		MATLAB	📃 Department B	Workflow 3	Analysis Effort 3	📙 Program Z

Some Additional Challenges

Reuse of Models and Capturing Model Assumptions

- · One of the core concepts of system architecting is element reuse
- · Simulation models are difficult to define to enable reuse
 - Our analysts kept pushing back on reusing a simulation model between different workflows due to some assumption on the simulation model
- We realized we can capture simulation model assumptions and use the descriptive detail of system architecting to be more accurate in the assumption
 - SysML constraint elements can be used at various different levels in the work flow to capture the model assumptions and enable discussions on reuse
 - On simulation model block Assumption that applies to the simulation model in all instances
 - On part property / model usage Assumption that applies to the simulation model only when used a specific analysis workflow
 - On interfaces / ports Assumption that applies only to this specific interface on the simulation model
 - On connectors Assumption that applies to the connection between the simulation models
 - On analysis workflow block Assumption that applies to the entire workflow

Some Additional Challenges

Alignment with the System Architecture

- There can be additional insight if the information in the model workflow architecture is traced to the information in the system architecture
- One approach is defining analysis functions allocated to the simulation model and tracing them to the allocated system functions in the system architecture
 - The traceability to the system function adds clarity to what the simulation model is capturing beyond a model subject
 - If analysis functions are defined as SysML activities, the analysis functions can be further expressed in a process flow through an activity diagram
 - Assumptions to those analysis functions can be added further define additional simulation model detail
- We are still exploring how this modeling pattern can be structured for our specific needs

Alignment with System Architecture Example: Model B tracing to Sensor Y's Functions

Some Additional Challenges

Capturing Information Updates / Simulation Model Registry & Curation

- Some information in the architecture can have regular updates (e.g., analysis efforts and their task leads)
 - How do we update and maintain this information in the architecture?
- We explored some thoughts around regularly updating information:
 - One idea is to develop a connector to pull the information from the appropriate database into the architecture tool
 - The stakeholders (e.g., task leads) would use their appropriate tool (e.g. task planning software)
 - The architects could use Cameo could pull the information down to develop the workflow architecture
 - Another idea is to develop a purpose-built simulation model registry and curation tool using this workflow architecture as a requirement basis for this capability
 - This architecture already defines a metamodel (entities and relationships) of how to capture the information
 - This purpose-built tool could be easier to use for the stakeholders and can capture the information of an architecture tool to a similar level of detail

Metamodel Example:

Lessons Learned

- Architecting the simulation model enterprise can help to identify opportunities for workflow improvements
 - The architecture can highlight some key attributes and traceability that can drive workflow improvement decisions
- Using an MBSE approach to simulation model information can capture the details that enable discussions on simulation assumptions and reuse
 - The information detail forces discussions with the analysts on why the simulation model is designed a specific way
 - By challenging those assumptions, there is more opportunity to rethink the simulation model's design and consider possibilities for reuse
- Capturing the right information in an enterprise architecture enables the right discussions with the stakeholders
 - The challenge of enterprise modeling is knowing when enough information is captured to enable business decisions
 - Capture and maintain architecture information that answers the questions that the stakeholders regularly request
 - The other detailed information can be captured and maintained in their respective tools (e.g., simulation code in a code repository, task details in a task planning tool, etc.)

Looking Ahead

- Considering transitioning some of these findings into a purpose-built simulation model registry and curation tool
- Exploring more of the interrelationship between the system definition and the simulation model definition
 - This is of special interest to our department as it enables the development of future simulation models along with the development of the system design
- Further discussions with the community on developing better enterprise approaches to modeling & simulation

Questions?

Risa Gorospe (risa.gorospe@jhuapl.edu) Shannon Dubicki (shannon.dubicki@jhuapl.edu)

JOHNS HOPKINS APPLIED PHYSICS LABORATORY