A Tale of Two OSAs: Integration of the DEWS Reference Architecture into the SOSA[™] Technical Standard

Presenter: Dr. Steven A. Davidson

Contributors: Keegan Merkert, Ron Kacsmar, Al Galgano, Mark Trevena, Howard Lazoff

Government Sponsors: Walter Roscello (NSWCDD) Christopher Behre (OUSD(A&S))

October 19, 2023

This technical data deliverable was developed using contract funds under Basic Contract No. W56KGU-18-D-0004

Approved for Public Release; Distribution Unlimited. Public Release Case Number 23-2945

A Tale of Two OSAs

It was the best of times:

Two maturing OSAs, with common roots, agree to harmonize and converge

It was the worst of times

Doing this is a challenge – as you will see (but not impossible)

But it is the <u>right</u> thing to do: The world is a better place with fewer, converged MOSA standards, than with OSAs breeding like rabbits

"The wonderful thing about standards is that there are so many of them to choose from."

Grace Murray Hopper
RDML Grace Hopper

Topics

DEWS and SOSA: Separated at Birth? Plan for Convergence Overarching Recommendations Module Convergence Interface Convergence

Sensor Open Systems Architecture (SOSA) Technical Standard

Open Systems Architecture (OSA) as a "building block" Reference Architecture

Incorporates functional modules, associated interfaces, and hardware and software infrastructure) for radar, EW, SIGINT, EO/IR, and communications

Vision: Business/acquisition practices and a technical environment for sensors and sensor payloads that foster innovation, industry engagement, competition, and allow for rapid fielding of cost- effective capabilities and platform mission reconfiguration while minimizing logistical requirements

Directed Energy Weapon System (DEWS) MOSA Reference Architecture

Open Systems Architecture (OSA) as a "building block" Reference Architecture

Incorporates functional modules, associated interfaces, and hardware and software infrastructure) for directed energy (HEL and HPM) systems

Vision: Directed Energy Weapon Systems (DEWS) Programs of Record leverage a broadly applicable open Reference Architecture, founded on MOSA principles that accelerates delivery of innovation, expedites acquisition and increases the reuse of standard components

SOSA and DEWS: The Similarities Run Deep

- Both are aligned with MOSA objectives
- Based on similar Quality Attributes and Architecture Principles
- Both emit of energy in the direction of objects of interest but DEWS "turns it up to eleven*"

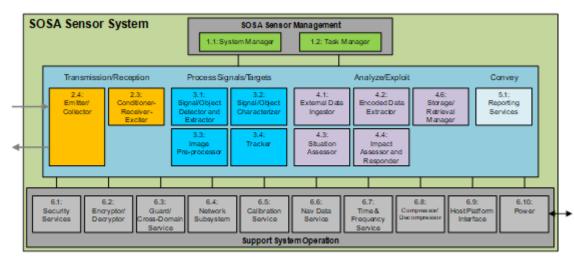


Figure 1. SOSA Modules – Graphical View

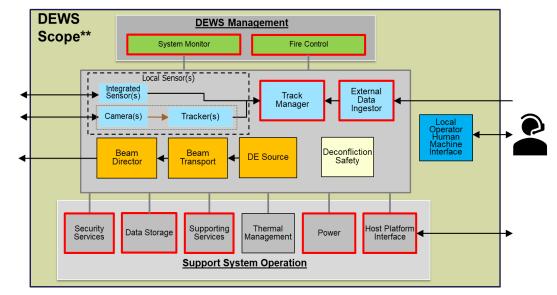
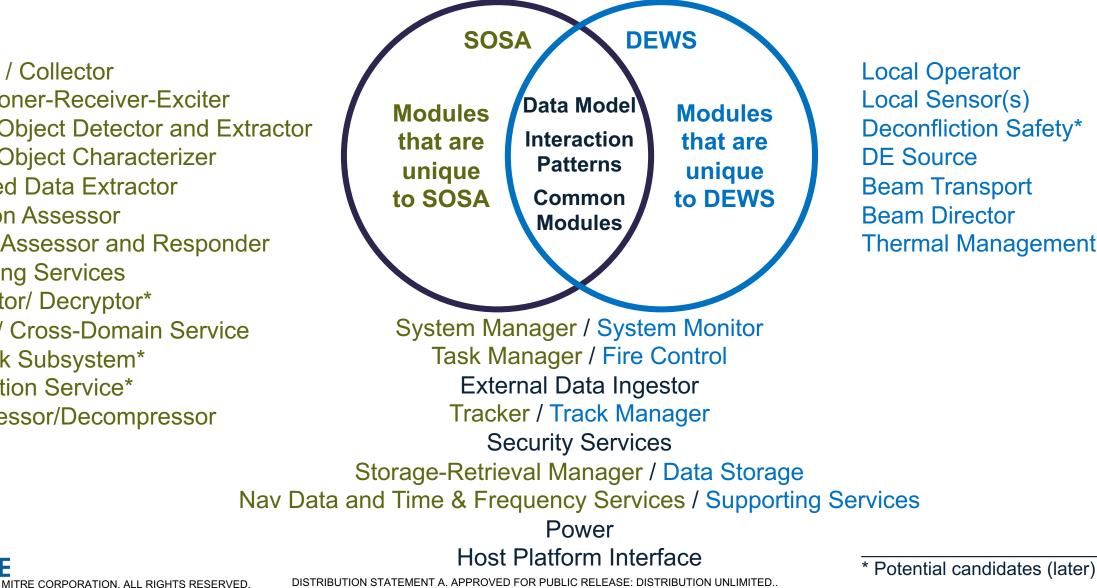



Figure 2. DEWS Modules – Graphical View (red outline = corresponding Modules)

^{*} Reference to "This is Spinal Tap" (1984)

SOSA / DEWS Modular Alignment

Emitter / Collector Conditioner-Receiver-Exciter Signal/Object Detector and Extractor Signal/Object Characterizer Encoded Data Extractor Situation Assessor Impact Assessor and Responder **Reporting Services** Encryptor/ Decryptor* Guard / Cross-Domain Service Network Subsystem* Calibration Service* Compressor/Decompressor

Local Sensor(s) **Deconfliction Safety* DE Source Beam Transport Beam Director Thermal Management***

Topics

DEWS and SOSA: Separated at Birth?

Plan for Convergence

Overarching Recommendations

Module Convergence

Interface Convergence

Plan for Convergence

SOSA TS was developed to be multi-INT, incorporating "best of breed" for radar, EW, SIGINT, EO/IR, and comms DEWS RA was able to leverage a set of prototype exemplar DE systems enabling it to incorporate functional details into DEWS modules

OUSD(R&E), as the DEWS sponsor, determined that the Defense community would benefit from convergence of shared modules and functions between the DEWS RA and the SOSA TS

In August 2022, a joint Convergence process was initiated to integrate the DEWS RA into the SOSA TS

Topics

DEWS and SOSA: Separated at Birth?

Plan for Convergence

Overarching Recommendations

Module Convergence

Interface Convergence

TOC from "Recommendations and Roadmap of Actions for DEWS Reference Architecture Integration into the SOSA Technical Standard"

Contents

1	. In	troduction1						
2	. Pu	Purpose						
3	. M	Nodular Structure						
4	. DI	EWS MOSA RA-unique Modules	4					
	4.1.	DEWS RA Integration into SOSA TS	5					
5	. 0	verarching Architecture Alignments	6					
	5.1.	Consistent Function Identifiers	6					
	5.2.	Common Functions	6					
	5.3.	Function Descriptions	7					
	5.4.	System Startup, Shutdown, States, and Modes	8					
	5.5.	Deconfliction Safety Module	8					
6	. M	odule Functionality Crosswalk	8					
	6.1.	External Data Ingestor Module (DEWS RA/SOSA TS)	8					
	6.2.	Data Storage (DEWS RA) / Storage/Retrieval Manager (SOSA TS) Modules	11					
	6.3.	Power Module (DEWS RA/SOSA TS)	13					
	6.4.	Track Manager (DEWS RA) / Tracker (SOSA TS) Modules	16					
	6.5.	Time and Navigation Data Modules (DEWS RA/SOSA TS)	19					
	6.6.	System Monitor (DEWS) / System Manager (SOSA) Modules	23					
	6.7.	Host Platform Interface Modules (DEWS RA/SOSA TS)	28					
	6.8.	Fire Control (DEWS RA) / Task Manager (SOSA TS) Modules	31					
	6.9.	Security Services Modules (DEWS RA/SOSA TS)	35					
	6.10	. 1.1. Data Model (DEWS/SOSA)	37					
7	. G	overnance Approach	38					
8	. Fi	nal Thoughts	39					
D								

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC BELEASED DISTRIBUTION LINUMITED

Overarching Recommendations from the SATT: Common Functions

Recommendation: SOSA adopt a convention of "common functions" across most modules

DEWS has defined 15 common functions applied to all modules.

Rationale:

SOSA adoption of these or additional/alternate functions as common will ensure uniform and consistent module definition and development

DEWS C	Common Functions	so
xx.81	Monitor H&S	Pe
xx.82	Accept BIT Request	
xx.83	Perform BIT	Ma
xx.84	System Initialization	Ma
xx.85	Report H&S	Ma
xx.87	Clear Faults	Ma
xx.88	Module Shutdown Command	Ma
xx.89	Log Activity	Ma
xx.91	Detect Faults	Pro
xx.92	Report Alarms	
xx.94	Abort in Emergency	Ma
xx.95	Automatic Error Recovery	M
xx.96	Request Authentication and Authorization	SO
xx.97	Synchronize DEWS module time	<u> </u>
xx.99	Emergency Module Shutdown Command	2.

SOSA Informal Common				
Perform Module System Management				
Manage Module Health				
Manage Module Discovery				
Manage Module Configuration				
Manage Module Control				
Manage Module Security				
Manage Module Assignments				
Process Module Assignments				
Manage Module Resources				
Monitor Module Assignments				

SOSA Functions Found In:

- 1. Signal/Object Detector & Extractor
- 2. Signal/Object Characterizer
- 3. Image Pre-Processor
- 4. Tracker
- 5. Host Platform Interface

Overarching Recommendations from the SATT: Governance

Recommendations:

- 1. DEWS should be fully managed by the SOSA Steering Committee (not a separate decision-making structure)
 - DEWS-unique modules would be governed (matured) by a newly formed DEWS Subcommittee under the TWG
- 2. Common Modules and Interfaces are incorporated into the SOSA Technical Standard
 - DEWS-unique Modules and Interfaces Published as a separate document (or appendix)

Rationale:

There are two aspects to governance:

<u>Decision-making Structure</u> -- which involves the definition of the "interested parties" (per OMB Circular 119 language) that would be involved in determination of direction and content of the Products

<u>Product Development</u> – such as the Technical Standard and other artifacts that result from the work being done

Of the six options reviewed, this was the preferred alternative because it maximized the opportunity to leverage overlap between SOSA and DEWS, but was least constraining to support the higher tempo of updates for the DEWS-unique Modules

Topics

DEWS and SOSA: Separated at Birth?

Plan for Convergence

Overarching Recommendations

Module Convergence

Interface Convergence

Module Convergence Process

Compare Module descriptions

Identify what is in common → core of harmonized module description Identify what is different → adjudicate if deltas are relevant Compare encapsulated Functions Identify Functions in common → keep (tweak if needed) Identify Functions that are different → augment as needed

Module Convergence Example: Power Module (1 of 3)

Common and Different

DEWS Description	SOSA Description
The Power Module either adapts	The Power module could be responsible for power conversion, conditioning, storage,
Host Platform power to the power	protection, distribution, and management. It applies to all sensor types. The Power module
requirements of the DEWS	could receive host platform power (via the Host Platform Interface module) and could
Modules (e.g., converting between	convert it to the conditioned power needed by SOSA modules. It could also include the
AC to DC, making voltage changes,	routing and distribution of power to SOSA modules that use it, which can include chassis,
etc.) or generates its own power	switches, relays, transformers, etc. The Power module could provide status such as to
<mark>for the DEWS.</mark>	indicate whether power is within specification and an alert to impending power loss. It also
	could provide a management interface that allows configuration, control, and status.
The Power Module is also	
responsible for power conditioning	Note that some modules could be designed with integrated power supplies. That type of
and <mark>storage</mark> .	module should have its own power management interface which could be aligned with the
	power management interface of the Power module.

Adjudication of Yellow: Generates its own power \rightarrow will remove Storage \rightarrow remain (used for both surge and conditioning) Via the Host Platform Interface \rightarrow remain (good for both)

Module Convergence Example: Power Module (2 of 3)

DEWS_ID	DEWS Func	DEWS Description	SOSA Function
68.13	Generate Power	In cases where the DEWS operates independently of Host-provided power, generate its own power internally. This Function is optional	
68.15	Receive Host- Provided Power	In cases where the DEWS doesn't generate its own power, receive input electrical power (e.g., 440VAC, 120 VAC, etc.) from Host Platform Interface Module. This is an optional function.	Convert between different power characteristics - From Host Platform Interface Determine voltage limitations for 68.15 – may need separate high/low voltage modes
68.16	Power on DEWS	A discrete (an external button or key) to turn on the entire DEWS. After powering up, this function will request power distribution (68.41) to SMM to begin DEWS initialization	
68.21	Power conversion	Transform prime power to match requirements for each DEWS Module (including DC/AC conversion, high voltage, spike protection, etc.)	Convert between different power characteristics
68.23	Provide Storage of Electrical Power	Stores energy (for example, in a battery) for use when needed by system modules	Store power for intermittent input power loss
		Use of storage is different between DEWS (which is focused on energy surge) and SOSA (which is to coast through intermittent source outages)	Store power to provide long-term power to loads without input power

Module Convergence Example: Power Module (3 of 3)

DEWS_ID	DEWS Func	DEWS Description	SOSA Function
68.41	Power Distribution	Discharges energy as needed to support DEWS modules, based on system condition and individual module needs	Distribute power from power supplies to power loads
68.55	Power Conditioning	Delivers power at the proper voltage and current characteristics by protecting against high/low voltage or current conditions, filter noise, transient impulse suppression, etc.	Condition/filter power
68.61	Accept Remote Control	Provides a digital interface to Local Operator and/or Host Platform to enable remote management and control of all functions	Provide a digital control interface
		Consider adding this to Power Conditioning and remove as a separate function. Need clarification if this is internal to SOSA (protecting the sensor) or external (e.g., breaker on host to keep wiring from catching on fire)	Protect against voltage and over-current conditions

<u>Recommendation</u>: The SOSA Power Module is adopted as the DEWS Power Module with some refinements to address missing DEWS functionality

<u>Rationale:</u> Most key power management functionality required by DEWS exists within the SOSA Power Module which requires only modest refinements to address missing DEWS functionality elease: DISTRIBUTION UNLIMITED.

Module Convergence Example: Tracker Module (1 of 3)

Common and Different

DEWS Description	SOSA Description	
The Track Manager Module maintains an internal store of the mathematical representation of objects of interest (hereafter known as Tracks). It correlates new (or newly provided) detections (either generated locally or from an external source) with existing Tracks, or creates new Tracks if the new detections do not correlate. It can receive Tracks (not just detections) from external track reports. The core functionality of the Tracker is data association, track initiation, track drop, track update, and uncertainty (e.g., covariance) of the Track. Estimation of relative position or location (geolocation) may also be performed. There is only oneTrack Manager in a DEWS.	tracks over time, forming new or updated tracks. It is responsible for all track management functions and producing track reports. The core functionality of the Tracker is data association, track initiation, track drop, track update, state and covariance estimation, and split track handling. Estimation of relative position or location (geolocation), when feasible, is also included in this function.	
Adjudication: Receives Tracks → remain (good for both) Track reports → remain (good for both) Split track handling → remain (good for both) © 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED.		

Module Convergence Example: Tracker Module (2 of 3)

Λ

DEWS_ID	DEWS Func	DEWS Description	SOSA Function (Edition 1)	
34.11	Initiate Track	In the case where new detection(s) is(are) not part of an existing Track, create a new Track	Initiate Tracks	
34.12	Receive Receives Engagement Directive as distributed by Fire Control Module, including shot			
	Engagement	duration, # of bursts, time between bursts, # of pulses in burst, pulse repetition rate, focus		
	Directive	and aiming offset		
34.13	Associate	For all new detections, makes determination it is part of an existing Track. If a match,	Associate Tracks	
	Detection	mark the detection as new input for existing Track (see Track Update), if not hand over to		
		Initiate Track function		
34.14	Accept	Receives and accept detections from Integrated Sensor, External Data Ingestor or by way	Process Detections	
	Detection Input	of Host Platform Interface		
34.15	Update Track	Uses new detection(s) or other track information to update the Track with the newly	Track Update	
received data		received data		
34.16	Accept Track	Receives and accept tracks from External Data Ingestor or by way of Host Platform		
	Input	Interface		
34.17	Associate Track	Makes a determination if a newly-received Track is the same as an existing Track, and if it	Associate Tracks	
		is, merge the Track Parameters to form a fused track (otherwise, store as a new Track)		
34.19	Delete Track	Removes a Track from the track store, either as a result of a Drop Track indication or	Terminate Track	
		because no new detections have been received after a specified time period (or other		
		criteria, such as target killed)		
34.21	Accept	Often the desired aimpoint is not the track centroid, and this function accepts that		
	Aimpoint	aimpoint adjustment and associates it with the indicated track ID	Nocossary for	
	Adjustment		Necessary for	
34.22	Delete All	Remove all tracks from the track store (after archiving them to the Data Storage Module)	training and	
	Tracks	DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED	safety	

Module Convergence Example: Tracker Module (3 of 3)

DEWS_ID	DEWS Func	DEWS Description	SOSA Function
34.23	Accept Target	Receives and tags the indicated track ID with a designation that identifies it as a target to be	
	Designation	irradiated	
34.25	Maintain Track	Periodically reviews the existing track store, ensures new detections have been associated and	Maintain Tracks
	Storeidentifies tracks that are stale and delete or clears track data when required. Object characteristics such as orientation, aim point, and any identifying information will be kept free		
		The history of all objects (detections and tracks) are retained.	
34.35	Prediction Upon request extrapolates an existing Track to the specified time to determine current (or		Track Prediction
		future) position, velocity, etc. " all provided with uncertainty values	
34.45	Disseminate	Upon request and at pre-determined intervals provide predicted object location to the rest of	
	Track(s)	the DEWS modules, operator, and/or the host platform	

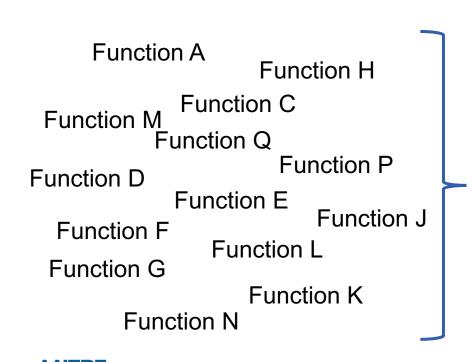
Recommendation: The DEWS Track Manager be adopted for the SOSA Tracker Module

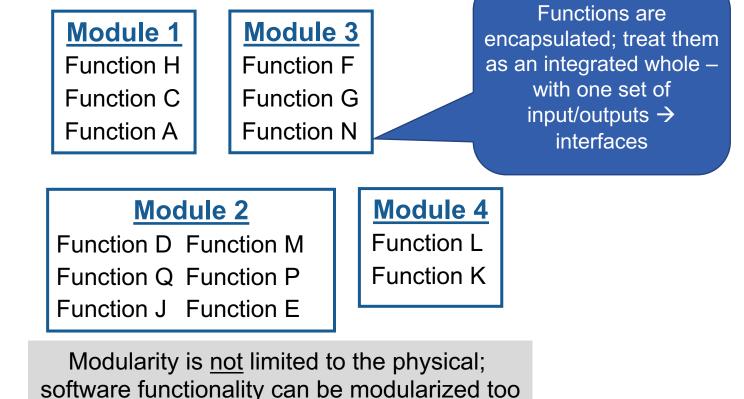
<u>Rationale</u>: Several key track manager functions are provided by the SOSA module, however because SOSA does not (yet) address weapon capabilities as part of the technical architecture, significant functionality would need to be incorporated to address missing DEWS track management functionality

Topics

DEWS and SOSA: Separated at Birth?

Plan for Convergence

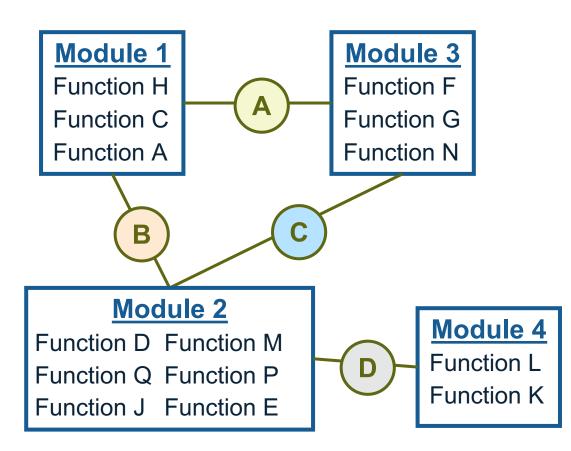

Overarching Recommendations


Module Convergence

Interface Convergence

MOSA: Modules Encapsulate Functions

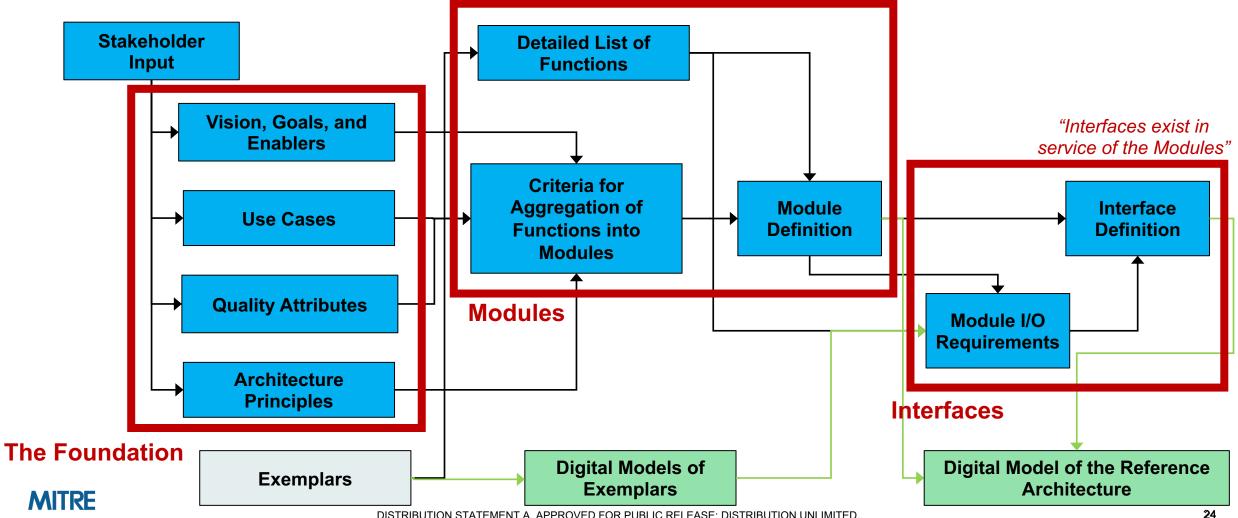
"... functionally is partitioned into discrete, cohesive, and self-contained units with well-defined interfaces that permit substitution of such units with similar components or products from alternate sources with minimum impact on existing units."



© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED.

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

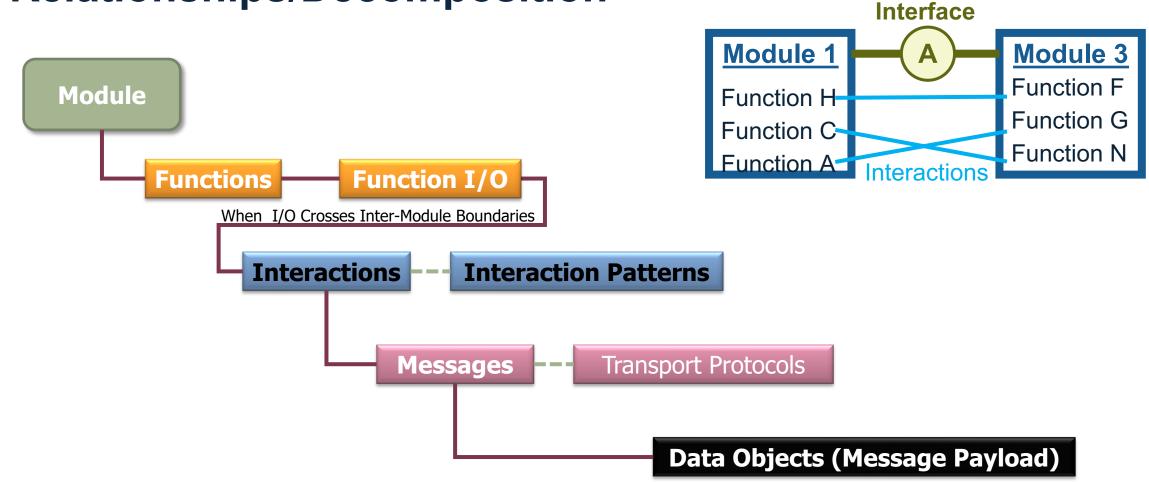
Interfaces are Made of Interactions Interactions Enable Functions to Exchange Data


Toy Example of Interactions Documented

Interaction on Interface	Producer Function	Consumer Function	Conveyed Signal&Data
A1	С	N	Rx Signal
A2	G	A	Tasking
A3	Н	F	Interlock
B2	Р	С	Enable
C1	М	G	Tracks
C3	Q	G	Cues
C4	G	E	Signal Quality
C5	J	G	Track Priority
D1	J	L	Write data
D2	К	М	Read data

Interactions between Functions within the same Modules do not appear on Interfaces

MITRF


Best Practice for Reference Architecture Development

© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED.

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED..

Relationships/Decomposition

MITRE

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED...

Example (from DEWS) of Functions Encapsulated in a Module

ID	Name	Description
21.11	Display Situational Awareness Data	Display map of system tracks relative to host platform. May include symbology (e.g., MIL-STD-2525), overlays, etc. Display sources include result of the current track store, Local Sensors, primary aperture, or direct feed from External Sensor or Host Platform. This display is also a user interface for functions such as designating tracks. If a track is to be designated for attack, the designated object is tagged as the target
21.13	Display Video	Display Local Sensor video feeds to DEWS operator for use in carrying out engagements. The feeds may be real-time or pre-recorded. The operator display allows the replay, pause, rewind, fast forward, etc. (so-called "TiVo functionality") permitting reconstruction and analysis.
21.14	H&S Status Update	Request and receive system H&S from the System Monitor
21.15	Display and Control Status	Provide visual display of system status (received from Fire Control), view and control states/modes (conveyed to Fire Control), system power on/off, fault conditions and alarms (including the ability to drill-down to gather more detail, and clearing alarms)
21.16	Initiate BIT	Request that the System Monitor Module that a Built-in Test (BIT) to be performed

Only showing five of the 26 functions for Module 21 (Local Operator HMI)

DEWS Example: Mapping Functions → I/O Needs → Inter-Module Interactions

ID	Name	Input Needs	Input Source	Product Produced	Product Destination
21.11	Display Situational Awareness Data	Track Data (tracks and kinematic data)	Track Manager Module	Data in display format	Fire Control Module
21.13	Display Video	Video data	Local Sensor Module (real-time) and Data Storage Module (playback)	Video in display format	(local operator display)
21.14	H&S Status Update	H&S status report	System Monitor Module	Status request	System Monitor Module
21.15	Display and Control Status	System status data,	Fire Control Module	Data in display format, Control messages	(local operator display), Fire Control Module
21.16	Initiate BIT	Operator input	(controls internal to this module)	Request to initiate BIT	System Monitor Module

Only showing five of the 26 functions for Module 21 (Local Operator HMI)

A Tale of Two OSAs Challenge: SOSA Defines Interactions without Reference to Source and Destination Function

SOSA defines each inter-Module Interaction based on either:

- Notional Sensor Thread Logical Flows, or
- Based on a SOA (API-like) approach that makes no assumption about what is at the other end of the connection

SOSA interactions are not associated consumer or producer at the distant end of the connection DEWS defines each inter-Module Interaction based on consumer / producer (input/output) relationships between the Functions that are involved in the Interaction

DEWS Interactions are tagged with source and destination Function ID numbers

This is a current/active area of convergence that should be fully resolved by the time this presentation is given

Conclusion

- It is the best of times and the worst of times isn't all that bad
- Merging two different OSAs is not easy, but it is the <u>right</u> thing to do
- This serves as an exemplar for how the community could (should) look at the plethora of existing OSAs and find a way to "trim it back"
 - Identify commonality and overlap examine the "touchpoints"
 - Leverage the common
 - Work to find common ground on the deltas
 - Approach it from a win-win perspective
- Success story: the DEWS RA is being incorporated into the SOSA Technical Standard
 - Portions of it are already in the SOSA TS revision currently in release review
 - There is work to be done because it is hard (but worth it)

Get Involved – Help Shape the Future

Check to see if your organization a SOSA Consortium member:

https://www.opengroup.org/sosa/members

If not, the process for an organization to join is described here:

https://www.opengroup.org/sosa/join

Once the organization is a member, you can be "onboarded:"

https://www.opengroup.org/sosa/onboarding

The final step is selecting the parts of SOSA Consortium you want to work with. We recommend, at the very least, the DEWS Subcommittee (under the Technical Working Group).