

Program MOSA Transformation

Information Needs and Metrics

Measuring MOSA Implementation and MOSA Product Value/Success

& Culture

NDIA Systems and Mission Engineering Conference

Steve Henry Consultant <u>TAMU1971@MSN.com</u> (703) 861-7344 Version 8

1

NDIR

NDIA SE Division

Architecture Committee

MOSA Metrics Working Group

DoD Modular Open System Approach Ecosystem What are Key Stakeholder MOSA Information Needs?

MOSA Implementation Iceberg Challenge

Business Approach

ISILIESS
jective
D

Reduced Time to Field Capability and Lifecycle Cost

Build for Change: Secure, Responsive, Scalable, Modular, Available, and Affordable Functionality.

Cost and Schedule Baseline

Optimized Modular Design/ Verified Interfaces

Identify Enabling Interfaces, Reference Architectures and Open Standards and **Acquire Appropriate Data Rights**

Develop Functional Architecture/Model **Traceability & Document Authoritative** Source of Truth

Integrated Business and Technical Approach **Enterprise Portfolio and Project Enabling Processes Optimize Competition and Innovation Opportunities Enterprise**/Program **MOSA Requirements** Digital Engineering /MBSE

Technical Approach

Rapid Deployment of Suitable and Effective **Mission Capability**

Mission Objective

Product Baseline - Supporting **Operational Flexibility and Reduced Support** and Sustainment Cost

Digital Twin/MOSA Enabling Environment

- Supporting Continuous Competition, Innovation, and Increase Interoperability

Allocated Baseline - Supporting Enhanced Incremental Technology Change and Reuse Using Rapid, and Agile Development

Functional Baseline – Establishes Initial system performance specification and external interface specifications

eve Henry, V8 27 Sep 23

Measure MOSA Implementation Progress and Objective Achievement Measures

BLUF – Measure Progress of the System's MOSA Implementation and MOSA Objective Success

Steve Henry, V8 27 Sep 23 Approved for Public Release

Step 1: Begin with The End MOSA Objective in Mind

• Success is defined in the context of enterprise and program business and mission objectives

Step 2: Apply MOSA Tenants to Define the Required Standards, Interfaces, and Modularity

• Acquirers should identify the standards, interfaces, and modularity needed to meet objectives

Step 3: Identify Derived MOSA Implementation Requirements

 MOSA attributes needed to meet objectives are requirements and implemented as part of the mission capability solution

Step 4: Conduct Program Planning/ Contracting – MOSA Information Needs and Metrics

 Program planning requires robust systems engineering and program management to produce and coordinate and effective and workable implementation and lifecycle achievement of MOSA objectives

Step 5: How to Status MOSA Implementation (MOSA Metrics)

Program assessment and control processes and measures provide the information needed to support
program decisions and effectively execute the program plan and MOSA implementation

Step 6: Managing MOSA In Technical Baselines – Information Needs and Metrics

 The technical baseline provides an accurate and controlled basis for managing change, cost estimates/budgets, technical plans and schedules, and contracting activity.

Step 7: Measuring Lifecyle MOSA Benefit Achievement (MOSA Metrics)

• Are we achieving our MOSA business/technical objectives and MOSA Product Value identified in Step 1?

Step 1 – Begin with the End in Mind

Step 2 - Apply MOSA Tenets to Define the Required Standards, Interfaces, and Modularity

Step 3 Identify Derived MOSA Implementation Requirements Open Architecture Technical Approach and Processes

Adopt an Open Architecture Approach

- Incorporate appropriate considerations for: reconfigurability, portability, maintainability, technology insertion, vendor independence, reusability, scalability, interoperability, upgradeability, and life cycle supportability
- Document the intended implementation of identified open standards, interfaces and/or Technical Reference Frameworks in the system models and acquisition strategy
- Address the means for ensuring adherence or conformance to open standards and open architectural principles throughout the development process and lifecycle.

- Optimize Architecture Modularity to Support Competition and Change
 - Describe in detail proposed system architecture and how it is robust, layered, modular, adaptable and makes maximum use of existing Government-Off-the-Shelf (GOTS) hardware and software, Commercial CSCIs including Commercial-Off-the-Shelf (COTS) software, COTS hardware, operating systems, and middleware
 - Reduce module coupling and increase module cohesion
 - Describe how the level of modularity supports MOSA and Mission Objectives

Incorporate the MOSA implementation Attributes in technical baselines and models

<u>Can Capture the MOSA Statutory Requirements from 10 U.S. Code</u> § 4402 in the Open System Management Plan, DI-MGMT-82099

Appendix A Master MOSA Metrics List, Appendix H, Technical Review Questions Appendix D – Modular Open System Approach (MOSA) Reuse of/SW and HW Use Case

Approved for Public Release Step 4 – MOSA Technical and Business Baselines MOSA Technical and Business Baselines

Step 4 Program Planning

MOSA Product Value

- Optimized Modularity
- Functionality/ Performance
- Dependability
- Security
- Business Value

Steve Henry, V8 27 Sep 23

Product Acquisition Planning – MOSA Integrated Business and Technical Strategy

Appendix J - Methods and Assessment Criteria to Quantitatively Evaluate MOSA Appendix K - MOSA Enhance Competition Strategy and Metrics Approved for Public Release

Step 5 – Tailor Your Measurement of MOSA Implementation

Appendix A - Master MOSA

				Metrics List	
PSM Continuous Iterative Development	PSM Digital Engineering	Technical Risk Assessments	Business and Financial	Operations and Support	
MOSA P	Product Value (Secure, R	esponsive, Scalable, Mo	dular, Available, and Aff	ordable)	
Automated Test Coverage	<u>Functional Architecture</u> <u>Completeness and Volatility</u> (8.1)	<u>Technology Readiness Levels</u>	Trend Line Chart	<u>Reliability and</u> <u>Maintainability</u>	
<u>Burndown</u>	Model Traceability (8.2)	Integration Readiness Levels	Cost Risk Assessments	Mean time Between Failures	
<u>Committed vs Delivered/</u> <u>Completed</u>	Product Size (8.3)	<u>Reuse Readiness Levels</u> (NASA)	Schedule Risk Assessments	Operational Availability	
Cumulative Flow	Digital Engineering (DE) Anomalies (8.4)	<u>Manufacturing Readiness</u> Levels	<u>Market Share/Revenue</u> <u>Growth</u>	<u>Corrective Maintenance</u> Time (CMT)	
Cycle Time/Lead Time	Adaptability and Rework (8.5)	System Complexity Levels	Return on Investment (ROI)	Key Performance Parameters (KPP)	
Defect Detection	Product Automation (8.6)	Change Failure Rates	Profit Margin	Change Failure Rates	
Defect Resolution		<u>Reliability and</u> Maintainability	<u>Probability of Competition</u> (Pgo)	Lifecycle Cost Trends	
<u>Mean Time to Detect</u> (MTTD) and Mean Time to Restore (MTTR)		<u>Technical Performance</u> <u>Measures</u>	Probability of Win (Pwin)	MOE/MOPS	
Release or Deployment Frequency	These Recom	mended Metrics	Competition Effectiveness		
Team Velocity	are <u>not</u> presc	riptive, but they	Change Failure Rates		
Technical Debt	represent	best practices	Lifecycle Cost Trends	Steve Henry, V8 27 Sep 23 ¹⁰	

Step 6 – Manage Technical Baselines Align MOSA Implementation With SE Process

Technical Baselines Key Information

- Functional
 - System Performance
 Specification
 - External Interfaces Specifications/Standards
 - Functional Architecture
- Allocated
 - Item Performance Specifications
 - Internal Interfaces
 Specifications/ Standards
 - Physical Architecture
- Production
 - Item Details Specifications
 - Physical Architecture
 - Technical Architecture

MOSA features are implemented and verified in the design and implementation?

Technical Baseline Purpose

- The <u>functional baseline</u> is the required system functionality describing functional and interface characteristics of the overall system, and the verification required to demonstrate the achievement of those specified functional characteristics.
- The <u>allocated baseline</u> is the configuration items making up a system, and then how system function and performance requirements are allocated across lowerlevel configuration items (hence the term allocated baseline).
- The **product baseline** is the documentation describing all of the necessary functional and physical characteristics of a configuration item; the selected functional and physical characteristics designated for production acceptance testing; and tests necessary for deployment/installation, operation, support, training, and disposal of the configuration item. <u>DAU Technical Baselines</u> 11

Step 6 – Manage the Technical Baselines

Approved for Public Release

Project Planning; Project Assessment and Control; Decision, Risk, Configuration, Information Management; and Measurement and Quality Assurance Processes

13

Step 7 Measure Lifecycle Benefit Achievements Enhance Competition Use Case

MOSA Enhance Competition Overview

Appendix K - MOSA Enhance Competition Strategy and Metrics

Approved for Public Release

Step 7 Measure Lifecycle Benefit Achievements (Measure MOSA Success Against the Objectives Chosen in Step 1) NDIA Example (Not PEO Aviation) Mapping of Candidate Metrics to Army PEO Aviation MOSA Objectives

Improved Live Cycle Affordability	Increased Readiness	Enhanced Capabilities	Reduced Schedule Pressure	Reduced Supply Chain Risk	
MOSA Product Value MOSA Product Value (Secure, Responsive, Scalable, Modular, Available, and Affordable)					
Life Cycle Cost Trends	Reliability & Maintainability	Competition Frequency	Lead Time	Functional Architecture Completeness and Volatility (8.1)	
Material Cost Trends	Operational Availability	Opportunity Pipeline	Cycle Time	Model Traceability (8.2)	
Unit Cost Trends	Change Rate Failure	Investment Trends	Release Frequency	Committed vs Delivered	
Touch Labor Trends	MOEs/MOPs	Return on Investment	Team Velocity	Release Frequency	
Competition Effectiveness	Defect Detection	Budget Trends	Automated test Coverage	TRL/IRL/MRL	
Cost Risk Assessments	Defect Resolution	Key Performance	Defect Detection	Reuse Readiness Levels	

Cost Risk Assessments	Defect Resolution	Rey Performance Parameters)KPPS)	Defect Detection	Reuse Readiness Levels
Reliability & Maintainability		MOEs/MOPs	Defect Resolution	System Complexity Levels
Cost Risk Assessments		Reuse Readiness Levels	Schedule Risk Assessments	Change Failure Rate
Reuse Readiness Level	Steve Henry, V8 27 Sep 23	Technical Debt	Mean Time to Detect/ Restore	Automated test Coverage

NDIA MOSA Implementation Considerations, Information Needs and Metrics Use Case Appendices Content

- **3.1 Appendix A Master MOSA Metrics List**
- **3.2 Appendix B Systems Engineering Processes and MOSA Metrics**
- **3.3 Appendix C MOSA Product Value Specification**
- 3.4 Appendix D Modular Open System Approach (MOSA) Reuse of SW and HW Use Case
- **3.4 Appendix D Criteria-Based Software Reuse Assessment Tool Based on NASA SW Reuse Criteria**
- **3.6 Appendix E Navy CANES MOSA Acquisition/Technical Refresh Strategy**
- 3.7 Appendix F USAF GATM MOSA Acquisition/Technical Refresh Strategy
- **3.8 Appendix G Army PEO Aviation MOSA Guidance**
- **3.9 Appendix H Systems Engineering Technical Review Questions**
- **3.10** Appendix I System of Systems Interoperability and Mission Integration
- **3.11 Appendix J Methods and Assessment Criteria to Quantitatively Evaluate MOSA**
- **3.12** Appendix K MOSA Enhance Competition Strategy and Metrics

MOSA Implementation Considerations, Information Needs and Metrics White Paper

- Planned Release Oct 2023
 - NDIA Connect Systems Engineering National Defense Industrial Association (ndia.org) (Membership Required)
 - NDIA System Engineering Division Studies and Publications (Public Access)
- For More Information Contact:
 - Steve Henry <u>tamu1971@msn.com</u>
 - Bob Scheurer <u>Robert.P.Scheurer@boeing.com</u>
 - Ed Moshinsky <u>ed.moshinsky@gmail.com</u>
 - Joseph Bradley josephbradley@leadingchangellc.net
 - Dr Robert Raygan <u>Robert.Raygan@dau.edu</u>

Approved for Public Release

BACKUP

246

840

L H

11111111111

100000000

................

111210101010101

THEF

Steve Henry, V8 27 Sep 23

Appendix A – Master MOSA Metrics List

MetricX	Information·Need×	Examples·MOSA·Application·of·Measures¤	¤
MOSA·Product·	What·value·is·MOSA·providing·the·	Optimized·Modularity: Modularity·provides·significant·opportunities·for·	¤
Value Optimized -	program, product, capability, or	continuous·life·cycle·competition·innovation·for·both·the·acquirer·and·supplier·	
Product	system?¤	supply·chain.·Modularity·and·data·and·intellectual·property·fully·support·the·	
Modularity¶		product · roadmap · evolution · path , · technical · refresh · plans , · and · operational ·	
CID-9A¤		reconfiguration flexibility and achieves desired MOSA benefits:	
		• \rightarrow Significant·cost·savings·or·avoidance¶	
		$\circ \rightarrow \text{Life} \cdot \text{Cycle} \cdot \text{Cost} \cdot \text{Reductions}$	
		$\circ \rightarrow \text{Reuse-cost-saving/avoidance}$	
		$\circ \rightarrow Reduced \cdot Production \cdot Cost$	
		o → Reduced·Maintenance·Costs¶	
		• → Schedule reductions¶	
		$\circ \rightarrow Reduced \cdot lead \cdot and \cdot cycle \cdot times$	
		$\circ \rightarrow Faster \cdot release \cdot frequency$	
		• \rightarrow Opportunities for technical upgrades	
		$\circ \rightarrow \text{Reduced} \circ \text{obsolescence}$	
		$\circ \rightarrow \text{Technical-performance-measures}$	
		• → Increased interoperability, including system of systems interoperability and	
		mission integration; or other benefits during the sustainment phase of a	
		major weapon system¤	
MOSA·Product·	What·is·the·Value·of·MOSA·to·the·	User:¶	¤
Value·∙User•	stakeholders?¤	 → Rapid·on·demand·deployment·frequency¶ 	
Stakeholder∙		• \rightarrow Combat operational configuration flexibility¶	
Value ¶		• → Increased interoperability¶	
CID·9B1¤		• → High-system-availability¶	
		• \rightarrow Increase readiness with increased cyber resiliency ¶	
		• → Lower-operations-and-support-cost¥	
MOSA·Product·		Acquirer:	-¤
Value Acquirer-		• \rightarrow Increased affordability: Avoid vendor lock increase competition and enable.	
Stakeholder		reuse (develop & certify once. deploy many) and reduce life cycle costs	
Value¶		• \rightarrow Reduce supply chain risk: "Competitive ontions obsolescence mitigations cand-	
CID-9B2k		simplified-logistics-tail¶	

portfolio reference architectures and standards?

Portfolio Management Process					
The portfolio management process commits the investment of adequate organization funding and resources, and sanctions the					
authorities needed to establish selected projects. It performs continued qualification of projects to confirm					
they justify, or can be redirected to justify, continued investment. (IEEE 15288)					
MOSA Information Need	Sample Application of Metrics for MOSA				
What are the supportive requirements; business practices; and technology	<u>Committed vs</u>				
development, acquisition, T&E, and product support strategies for effective	Delivered/Completed				
development of open systems in the portfolio?	<u>Cumulative Flow</u>				
Are the portfolio MOSA projects being implemented in accordance with	• <u>Burndown</u>				
established MOSA policies and contract requirements?	<u>Cost Risk Assessment</u>				
What investment(s) are required to effectively implement the MOSA strategy?	<u>Schedule Risk Assessment</u>				
what investment(s) are required to enectively implement the MOSA strategy?	<u>Return on Investment (ROI)</u>				
What is the cost and schedule of realizing the MOSA investment(s)	• <u>Burndown</u>				
What is the new MOSA opportunity backlog?					
 Commonality 					
o Reuse					
o Other					
What is the current mission and MOSA requirement priorities?					
What is the return on investment for MOSA opportunities?					
What is the status of implementing MOSA interfaces, components, and required					

Approved for Public Release

Appendix D – Software Reuse Readiness Levels Assessment Criteria (What are the Program risks?)

Reuse Readiness Level Attributes	RRL Attribute Focus
Documentation	Information that describes the software asset and how to use it.
Extensibility	The ability of the asset to be grown beyond its current context.
Intellectual Property	The legal rights for obtaining, using, modifying and distributing the asset.
Modularity	The degree of segregation and containment of an asset or components of an asset.
Packaging	The methodology and technology for assembling and encapsulating the components of a software asset.
Portability	The independence of an asset from platform-specific technologies
Standards Compliance	The adherence of an asset to accepted technology definitions.
Support	The amount and type of assistance available to users of the asset.
Verification and Validation	The degree to which the functionality and applicability of the asset has been demonstrated.

Adapted: (NASA Reuse Readiness Levels)

Appendix D - Reuse Readiness Level Score Card Detailed Scoring Example

Reuse Read	liness Attribute Defintions			
Reuse Readiness Attribute	Resue Readiness Atttribute Defnition	RRL 1	RRL 2	RRL 3
Information that describes the software asset	Little or no internal or external documentation available	Partially to fully commented source code available	Basic external documentation for sophisticated users available	
	and how to use it. MOSA Benefit:	Source code is available, with little or no useful internal or external documentation	Source code is available and fully commented, but no other documentation is provided	For example, a README file, a "man" page, or command line usage examples
Documentation	determine whether the software addresses the need and informs adopters how to utilize the software and reduce the risks and costs of reuse. Documentation includes descriptions of interfaces and capabilities, information about the execution environment, and instructions for the consumer on the purpose of the asset and on ways in can be reused. Documentation also describes plans for subsequent releases and future development.		It may be challenging for a good programmer to determine how to reuse the software	This type of documentation would be sufficient for a sophisticated user to figure out how to use the software, but probably not a general user.

Appendix E Navy CANES MOSA Acquisition Strategy 2007

- Adapt to evolving requirements and threats as identified by the Government
- Enhance interoperability and the ability to integrate new capabilities without redesign of entire systems or large portions
- Accelerate transition from science and technology into acquisition and deployment;
- Facilitate systems reconfiguration and integration
- Reduce the development cycle time and total life-cycle cost
- Plans for integrating the systems both internally and with external systems (System of Systems)
- Provide a means for **ensuring conformance to open standards and profiles**
- Develop a technical approach that ensures having access to **mature as well as the latest technologies** by establishing **a robust, modular, and evolving architecture based on open standards**.
- Develop a strategy for maintaining the currency of technology (e.g., through COTS or reusable NDI insertion, technology refresh strategies
- Maintain continued access to cutting edge technologies and products from multiple suppliers; and
- Mitigate the risks associated with reliance on a single source of supply over the life of the system, to include, but be not limited to, technology obsolescence and dependence on proprietary or vendor-unique technology.

Appendix E Navy CANE MOSA Benefit Evolution

Continued

CANES 2012 MOSA Baseline

- **Maximize Competition: CANES** strategy maximizes competition throughout program's lifecycle
- **Open Standards**: CANES specifications promote further ٠ competition
- **CANES MOSA Strategy:** CANES Life-Cycle Support ٠ Approach
 - Modular Open System Approach (MOSA) Open **Systems Architecture Requirements**
 - **Reference Architecture:** The CANES system developed in accordance with the NESI Implementation Framework
 - **Standards Conformance:** Validated development the program in compliance with NESI standards and mission capabilities
 - **Intellectual Property:** Secured full data rights.

CANES Application Integration effort provides common software governance, testing, processes, and tools to application developers.

Appendix E Navy CANES MOSA Acquistion Strategy

- Provide a secure afloat network required for Naval and Joint Operations
- Consolidate and reduce the number of afloat networks through the use of Common Computing Environment and mature cross domain Technologies
- Reduce the infrastructure footprint and associated Logistics, Sustainment, and Training Costs
- Increase reliability, security, interoperability and application hosting to meet current and projected Warfighter requirements

USAF Scientific Advisory Board Findings, Report on Global Air Navigations, Volume 2, Detailed Findings, SAB-TR97-02, Sep 1998 0305099F Global Air Traffic Management (GATM), RD2 – February 2000 0305099F Global Air Traffic Management (GATM), RD-2, Feb 2015 0305099F Global Air Traffic 29 Management (GATM), RD-2, May 2021

Appendix F GATM Acquisition Strategy

•

Appendix F

Steve Henry, V8 27 Sep 23

GATM Stakeholder MOSA Success Metrics

Aircraft Program Office	Major Command
Aircraft GATM Integration/ Deployment Timelines • On time GATM Component Delivery vs need • Aircraft GATM Integration Cycle Times	Aircraft GATM Deployment Timelines • GATM Equipage % by Fleet Burndown • Denied Airspace Access Backlog
 Aircraft GATM equipage cost Aircraft Integration Cost Funding Shortfalls Integration Competition Cost Savings Integration Cost Avoidance GATM Component Unit Pricing Trends over time GATM Component Repair Cost 	 Total GATM Program Cost Aircraft Integration Cost vs Committed Sustainment Cost Reductions Mean Time Between Failures Mean Time to Repair GATM Competition Cost Savings Commonality Across Platforms Lifecycle Cost
 Speed of Delivery Average GATM Component Delivery time from time of order Aircraft GATM Modification Cycle Time Trends 	 Speed of Delivery Aircraft GATM Equipage vs Need Timelines Mean Time to Repair and Return
Aircraft Conformance to GATM Standards • Aircraft GATM Conformance burn down	Aircraft Conformance to GATM Standards • Airspace Access Standards Conformance
	Aircraft GATM Integration/ Deployment Timelines • On time GATM Component Delivery vs need • Aircraft GATM Integration Cycle Times Aircraft GATM equipage cost • Aircraft Integration Cost Funding Shortfalls • Integration Cost Funding Shortfalls • Integration Cost Avoidance • Integration Cost Avoidance • GATM Component Unit Pricing Trends over time • GATM Component Repair Cost Speed of Delivery • Average GATM Component Delivery time from time of order • Aircraft GATM Modification Cycle Time Trends Aircraft Conformance to GATM Standards • Aircraft GATM Conformance burn down

Aircraft GATM Conformance burn down

System Suitability and Effectiveness Measures . Operations That Can Be Executed vs Committed

Appendix G PEO Aviation Governance and Management

Architecture and established policy will be reviewed and enforced through Quarterly Reviews and Working Groups.

DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution is Unlimited

PEO Aviation MOSA Definitions and Benefit Objectives

Appendix H Technical Review Questions Alternative Solution Review Example

3. How will we ensure the preferred materiel has the best potential to be cost effective, affordable, operationally effective and suitable, and can be developed to provide a timely solution to the need at an acceptable level of risk given the program constraints?

- What is our Modular Open Systems Approach?
- What are the MOSA benefit objectives?
- What is the system sustainment strategy?
- At what level of indenture of the major system platform's Work Breakdown Structure (WBS) that feature what functionality will be added, removed, or replaced in future increments consistent with that major system platform's sustainment strategy and MOSA.
- What are our internal and external program interfaces and dependencies?

Appendix I System of Systems Interoperability and Mission Integration

Appendix J Methods and Assessment Criteria to Quantitatively Evaluate MOSA Approach Examples

MOSA Approach

- Technical Planning and Management
- Lower Cost and Rapid Refresh:
- Lower Cost and Supply Chain Innovation:
- Design Optimization:
- Standards and Reference Architecture Conformance:

Evaluation Criteria

- Balanced Execution Approach:
- Competition and Refresh Effectiveness:
- Supply Chain Innovation and Cost Savings:
- Optimizing for speed of change:
- MOSA Planning:
- Architecture Implementation/Lifecycle Effectiveness: