
© 2023 Raytheon Company.
All rights reserved.

18 October 2023

Kurt Mohr
Senior Fellow – Software Engineering

How Agile Enables FOSS Usage and
Modernization

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

The views and opinions expressed in the presentation are that of the
author and do not necessarily reflect the views of the author's
employer or other associated parties.

Always follow your company policies regarding the use of any third
party software including Free and Open Source Software (FOSS).

2

Disclaimer

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• FOSS definition

• The value of FOSS in development

• FOSS risks in non-agile environments

• How Agile can increase FOSS acceptance

• Integrating FOSS into the Agile lifecycle

• Agile methodology differences in FOSS enablement

• Real world examples of the need for FOSS speed

• FOSS evolution timeframe challenges

• Recommendations and Best Practices

Agenda

3
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

What is FOSS

4

COTS

GOTS

Freeware

Trial
ware

Free & Open Source
(FOSS)

Commercial Off-The-Shelf software is Software and hardware that
already exists and is available from commercial sources. It is also
referred to as off-the-shelf. This can include commercial versions of
FOSS packages.

COTS

Government Off-The-Shelf software is Software and hardware that
already exists and is available from Government sources.GOTS

“Free” refers to software that users typically have the freedom to run,
copy, distribute, study, change and improve the software.Free

“Open Source” refers to software with its source code publicly
available. However, this does not automatically mean the software
can be used for any purpose. Generally, a license is associated with
the software that defines the run rules of usage. See the broadly
accepted Open Source Initiative for more details.

“Open Source” refers to the ability to develop in peer-to-peer
community. Open Source in this context does not necessarily mean
that anyone can use the software for any purpose without permission
by the software owner, as many times FOSS requires a license to
download and use the software. Open Source software will frequently
have license terms that require the licensee to grant back certain
rights to the open source community.

Open
Source

“Freeware” refers to software available at no charge but not
distributed as Open Source. Freeware often comes with license
restrictions that forbid or restrict sharing. There is no agreed-upon set
of rights or licenses, and every publisher defines its own rules for
freeware.
Note: This excludes commercially available software provided free for
a limited time.

Freeware

Commercially available software that is provided free of charge for a
limited time or with limited functionality.Trialware

Scale of software in use in some domains

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Reduction in custom code
– FOSS capabilities and features can now be considered commodity
– Interfaces to FOSS are generally available as reusable low code/no code

• E.g. Kafka connectors
• Transferable knowledge

– Mature tooling likely to be available on multiple programs and companies
• E.g. DevSecOps tool chains can be common

– Documentation and best practices are in abundance from public sources
• Defect introduction and correction timeframe

– Most impactful issues addressed by the community
– Source code for proposed changes can be available even prior to release build

• Increased development speed
– Availability of example interface code can reduce trial and error
– Lessons learned from others using FOSS limits time spent taking bad paths

Value of FOSS in Development

5
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• System stability
– Number of users of the FOSS package can show it is stable
– Stable versions are labelled so users can choose between that or the latest

• Stable well documented interfaces
– Most FOSS uses some sort of Semantic Versioning to indicate interface changes
– Disruptive changes are generally limited because of the large user base
– Documentation on interfaces is plentiful

• Code efficiency
– Community peer reviews identify inefficiencies, improving operational effectiveness
– Large user base locates and rectifies performance issues quickly, reducing resource requirements

• Reduced time to market
– Less development means less time
– Stable FOSS doesn’t need to be tested by you every system release for every feature

• You don’t need to test a commodity, only that the system is using the commodity (e.g. test drive the
car, not each tire)

Value of FOSS in Operations

6

Coverity report shows open source
Can have significantly fewer defects
https://www.wired.com/2013/05/coverity-report

Processing one billion events per second with NiFi - Cloudera Blog

Apache NiFi can be scaled to process
billions of messages a second

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• The speed of FOSS can be no greater than the speed of your organization
– How many people have to approve a change?
– How much bureaucracy will there be

• Making changes and adapting to emerging FOSS is important
– Do you have to know everything at the time of the proposal?
– What if there is a newer FOSS package that may be better?

• Metrics can be misleading
– Are you locked in to Earned Value so experimenting could ‘look’ like a problem?
– Is up front cost of integration of FOSS going to disrupt the Integrated Master Schedule?

FOSS Value Depends on Organizational Agility

The benefits are clear, but can you really achieve them?

7
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

FOSS can be great, can we get the benefits?

8

• Reduction in custom code
– FOSS capabilities and features can now be considered

commodity
– Interfaces to FOSS are generally available as reusable low

code/no code

• Transferable knowledge
– Mature tooling likely to be available on multiple programs and

companies
– Documentation and best practices are in abundance from public

sources

• Defect introduction and correction timeframe
– Most impactful issues addressed by the community
– Source code for proposed changes can be available even prior

to release build

• Increased development speed
– Availability of example interface code can reduce trial and error
– Lessons learned from others using FOSS limits time spent taking

bad paths

• System stability
– Number of users of the FOSS package can show it is stable
– Stable versions are labelled so users can choose between

that or the latest

• Stable well documented interfaces
– Most FOSS uses some sort of Semantic Versioning to

indicate interface changes
– Disruptive changes are generally limited because of the large

user base
– Documentation on interfaces is plentiful

• Code efficiency
– Community peer reviews identify inefficiencies
– Large user base locates and rectifies performance issues

quickly

• Reduced time to market
– Less development means less time
– Stable FOSS doesn’t need to be tested by you every system

release for every feature
• You don’t need to test a commodity, only that the system is

using the commodity

Depends on how fast you
can get FOSS integrated

How recent is the version?
Are we working on ‘old’

FOSS?

As the FOSS community
fixes issues, how fast can
you get them in house?

Lessons learned may be
to update to the latest
version… can you?

An old version can be
stable, but may have
cyber or other risks

Documentation is plentiful
but if you don’t update

regularly, jumping multiple
major versions can be

risky

If you can’t or don’t
update regularly, your

version could have
inefficiencies

Not taking advantage of
new features in a timely

manner can mean
implementing yourself and

then backing it out later
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Considerations for non-Agile environments
– When is the FOSS selected?
– What happens when FOSS capabilities change?
– Is there schedule available to patch and upgrade?
– How do you respond to security findings in the FOSS community?

• How stringent are the requirements and design?
– Can you make changes after Critical Design Review?
– If a new FOSS package comes available, are you able to take advantage?
– Are you able to prototype to burn down risk?

FOSS Integration in Non-Agile Environments

FOSS in non-Agile is possible, but many questions need to be answered

9
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Risks in Waterfall FOSS usage
– FOSS packages could be implemented in development schedule but never

updated
– Duration it takes from security finding to system update could be long
– Configuration of the FOSS could be evolving as the team learns

• Could be cost and schedule implications
– Inability to take advantage of new features quickly

• Design can’t evolve as new FOSS packages become available
– Stuck at a moment in time of the Critical Design Review
– Prototyping and experimentation could be limited
– We have to assume the initial proposed architecture is accurate

FOSS Integration in Non-Agile Environments

There are risks in Waterfall as well as other development methodologies

10
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Notional update timeline

• Test cadence – How often are we running tests?

• Number of changes planned in proposed timeframe
– Proposal: Initial integration + 6 month patching cycle
– Reality: Initial integration + security updates as they are located + feature updates

quarterly that could improve the system

FOSS Updates in Waterfall

11

CDR FOSS
Implemented

System
Test

FOSS
Update

FOSS Security
Update

Team has pre-
planned work

Schedule Overrun

System
Retest

CDR FOSS
Implemented

System
Test

FOSS
Integrated

FOSS
Update

Schedule Overrun

System
Retest

FOSS
Configuration

Update

System
Test

System
Test

FOSS
Vulnerability

Patch

FOSS
Update

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Working software is the core criteria
• Principles are customer and delivery focused
• Technical excellence and good design
• Simplicity and constant improvement

12

What is “Agile” within this Context?

https://agilemanifesto.org/

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Agile allows updates to be prioritized based on need and value
– Backlog prioritization
– Customer awareness
– Architectural value

• Not all updates are equal
– Security updates: What is your exposure to the threat that was fixed
– Feature additions: Adding features when you need them, not when they are

available
– Bug fixes: If the bug is visible within the system context

Agile Enables FOSS

Agile allows dynamic contextual responsiveness to FOSS updates

13
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Obsolescence
– Version obsolescence: Replacing outdated versions that are end of life

• Can be managed more effectively in Agile with fewer disruptions
– FOSS obsolescence: Removing unsupported or unused FOSS

• Taking components out of a system can be integrated into an Agile cadence
• Allows management of risk against resources and schedule

• Replacement
– Newer or better FOSS products can be planned for integration
– Side by side comparison within a Sprint allows for informed decisions
– Opportunities to run multiple FOSS options in parallel for incremental

transformation

Agile Enables FOSS

The world is not static, Agile lets us roll with the FOSS flow

14
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Not only does Agile enable FOSS, but FOSS
supports the Agile manifesto

• Early and Continuous Value
– FOSS features are well documented
– Enabling a feature can be implementing an interface to

the FOSS

• Changing Requirements
– New FOSS can be introduced to fulfill changing

requirements
– Changes in requirements can be evaluated against

FOSS capabilities

FOSS Enables Agile

15
https://agilemanifesto.org/

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Frequent Updates
– FOSS installation and configuration is generally trivial
– Updating versions can be done within a sprint

• Providing a Stable Environment
– Development environment FOSS is widely used (e.g.

Integrated Development Environment)
– FOSS for testing can increase speed of adoption (e.g.

Selenium, Cucumber)
– Documentation and example code are available for low

ramp up time

FOSS Enables Agile

16
https://agilemanifesto.org/

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Working Software
– FOSS software is well tested and widely used
– Low risk of getting a software package that doesn’t

work

• Technical Excellence
– FOSS provides clear interfaces for integration
– Architectures and designs become less complicated

and more “low code” integration

FOSS Enables Agile

17https://agilemanifesto.org/
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Simplicity
– Existing documentation means no guess work on what

it will do
– APIs and connection methods generally readily

available
– Stringing FOSS together in known patterns can reduce

custom code volume

• Emergent Architectures
– Experimentation and trial and error can be performed to

find the “best” FOSS for the situation
– Side-by-side comparison removes paper trade studies

and guess work

FOSS Enables Agile

18
https://agilemanifesto.org/

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Scrum
– Adding items to the backlog assumes knowledge of releases
– Sprint duration drives the responsiveness

• Assume 2 week sprint, FOSS update comes out after sprint start so could be 4
weeks to release update

– Relative priorities and team capacity can impact if and when changes get deployed

Not all Agile are the Same

19

Story A
Story B
Story C
Story D
Story E

…
Story N

Project Backlog

Story A
Story C
Story E
Story K
Story N

Sprint Backlog

Sprint Duration

Story B
Story D
Story F

FOSS Story
Story L
Story M

Sprint Backlog

Sprint Planning

Sprint Planning

Sprint Duration
FOSS Update

Available
Displaces other
Work per Scrum

Update integrated

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Kanban
– Maintaining velocity and limiting Work in Progress requires FOSS prioritization
– Prioritizing each FOSS addition and update independently

• No set cadence as with other approaches
– Some updates may be ‘skipped’

Not all Agile are the Same

20

Work in ProgressOn Deck Done

Kafka
update
3.4.0

Backlog

Kafka
update
3.5.1

Docker
24.0.5

Zookee
per

update
3.9.0

Tomcat
11.0.0

Ubuntu
23.04

Tomcat
10.1.1

3

NiFi
1.23.2

openS
USE

Kubern
etes
1.26

Kafka
update
3.4.1

Zooke
eper

update
3.7.1

Jenkins
install

2.414.1

Kafka
install
3.3.2

Tomcat
patch

10.0.27

Zookee
per

update
3.6.4

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Scaled Agile Framework (SAFe)
– Balances intentional and emergent designs with focus on business value
– Establishes Program Increments that funnel content into release trains

• Uses Innovation and Planning iteration for new work
– States that personnel should not be planned at 100% capacity to allow adaptability
– Supports SAFe Scrum and Kanban teams as part of the Release Train

Not all Agile are the Same

21

Define Build Validate Release

Repeating

ART delivering Value

PI
 P

la
nn

in
g

PI
 P

la
nn

in
g

Ite
ra

tio
n

Ite
ra

tio
n

Ite
ra

tio
n

IP
 It

er
at

io
n

PI Objectives

Product
Owner

Scrum
Master

Agile Teams

Known FOSS updates can be inserted in the ART

FOSS innovation can be performed in the IP iteration

Critical FOSS updates may be possible in
‘spare’ capacity

80% capacity

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• The Log4j example
– How fast things change
– Bad guys get vulnerability notices too!

Real World FOSS – the Need for Speed

Could you respond fast enough? What does it do to other planned work?

22

Shell vulnerability
CVE‐2021‐44228
12/10/2021

CISA response
12/11/2021

Secondary DOS
vulnerability

CVE 2021‐45046
12/14/2021

Log4j 2.15.0
12/06/2021

Log4j 2.16.0
12/13/2021

Log4j 2.17.0
12/17/2021

Log4j 2.17.1
12/27/2021

Log4j 2.17.2
02/23/2022

Note: Previous update was
03/06/2021
Log4j 2.14.1

Disabled shell behavior by
default

Eliminated shell capability
Fixed DOS

Third vulnerability
with recursion
CVE 2021‐45105
12/18/2021

Corrected recursion

Had mitigation steps

Tenable publishes
report showing 10% of

all assets are
vulnerable
12/22/2021

FTC mandates US
companies patch

01/04/2022

Microsoft reports
China operators

exploiting
vulnerability
01/10/2022

Fourth vulnerability
with remote code

execution
CVE 2021‐44832
12/28/2021

*Data from https://nvd.nist.gov/

Reports from
Cryptolaemus of

banking trojan attacks
12/20/2021

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• OpenSSL
– Vulnerability CVE-2014-0160 that allowed an attacker to read from the memory of

servers and clients running vulnerable versions of the software

• Bash shell
– CVE-2014-6271 allowed attackers to execute arbitrary code on a system

• Apache Struts
– Multiple high profile vulnerabilities identified including CVE-2017-5638 for remote

command injection

• Libssh
– CVE-2018-10933 allowed attackers to bypass authentication including on Cisco

routers

Real World FOSS – Other Examples

There are many more, but this shows they can be very significant

23*Data from https://nvd.nist.gov/
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• The rate of change for FOSS packages depends on several
factors
– Maturity of FOSS
– Adoption rates
– Contribution rates
– Vulnerabilities

• You can plan for a cadence, but can’t rely on it
– Sometimes there is a fast and furious update cycle
– New features added can result in a series of patches

FOSS Evolution – a Timeline

Different FOSS packages update on different timelines

24

Rate of change can be a rollercoaster

The best plans can fall apart

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Apache NiFi
– 2023 – 6 updates as of this research
– 2022 – 9 updates, 1 a month with some gaps
– 2021 – 7 updates, 2 months with 2 releases, remaining releases several months

apart
– 2020 – 7 updates, 5 of which were in the first 3 months

• Kubernetes
– Releases happen “approximately” 3 times a year
– Several instances where there are 5+ in a year

FOSS Evolution - Exemplars

FOSS isn’t updated on your schedule, it is updated on the contributors

25
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Planning for change and evolution
– Assume constant change and new technologies
– Reserve capacity for modernization and experimentation

• Establish an update cadence
– Plan to update FOSS packages on a regular basis
– Updating patch versions is lower impact than waiting and moving multiple versions

concurrently
– If there isn’t an update, you can pull other work in

• Monitor boards
– Security vulnerabilities, FOSS updates, community forums
– Proactive is easier than reactive

Recommendations and Best Practices

Plan for change and you won’t be disappointed!

26

Have a plan and realize it will change

A cadence will help with ‘normal’ updates

Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

• Avoid static thinking
– Know that what was bid/proposed may be outdated by the time you implement
– Evolving/emergent architecture isn’t a bad thing

• Learn from others
– Knowledge from people who have used the FOSS before can reduce ramp up
– External and internal “common configurations” and “lessons learned” can improve

reuse

• Encouraging experimentation and failures
– Buying down risk and failing fast helps ensure the right solution is found
– Experimenting with new or replacement technologies can help articulate the value

Recommendations and Best Practices

Trial and error can be invaluable

27
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

Thank You

28
Approved for Public Release

© 2023 Raytheon Company. All rights reserved.

Speaker Bio

29

Kurt Mohr is a Senior Engineering Fellow with over 20 years in Software
Engineering and Architecture spanning both commercial and defense.
Kurt is the Software Technical Director for Raytheon Common
Engineering.

He has a strong background in multiple Agile development
methodologies including Scrum, Kanban, and Scaled Agile. Kurt has
architectural experience with multiple forms of software systems
including cloud, bare metal, and embedded as well as highly scalable
distributed computing. Kurt holds multiple industry certifications in
addition to his formal degree pursuits in Aeronautical Computer
Science, Engineering Management, and Organizational Management

Approved for Public Release

