N2

© 2023 Raytheon Company.
All rights reserved.

Raytheon

An RTX Business

How Agile Enables FOSS Usage and
Modernization

Kurt Mohr
Senior Fellow — Software Engineering

18 October 2023

Approved for Public Release

A

-
Disclaimer

The views and opinions expressed in the presentation are that of the
author and do not necessarily reflect the views of the author's
employer or other associated parties.

Always follow your company policies regarding the use of any third
party software including Free and Open Source Software (FOSS).

AnRTX Business

-]
Agenda

» FOSS definition

» The value of FOSS in development

* FOSS risks in non-agile environments

» How Agile can increase FOSS acceptance

* Integrating FOSS into the Agile lifecycle

» Agile methodology differences in FOSS enablement
» Real world examples of the need for FOSS speed

* FOSS evolution timeframe challenges

« Recommendations and Best Practices

N2
= Ruytheon © 2023 Raytheon Company. All rights reserved. 3
AnRTX Business

Approved for Public Release

What is FOSS

Commercial Off-The-Shelf software is Software and hardware that . . .
already exists and is available from commercial sources. It is also Scale Of SOftware In Use In some domalnS
referred to as off-the-shelf. This can include commercial versions of
FOSS packages.

Government Off-The-Shelf software is Software and hardware that
already exists and is available from Government sources.

“Free” refers to software that users typically have the freedom to run,
copy, distribute, study, change and improve the software.

“Open Source” refers to software with its source code publicly
available. However, this does not automatically mean the software
can be used for any purpose. Generally, a license is associated with
the software that defines the run rules of usage. See the broadly
accepted Open Source Initiative for more details.

“Open Source” refers to the ability to develop in peer-to-peer
community. Open Source in this context does not necessarily mean
that anyone can use the software for any purpose without permission
by the software owner, as many times FOSS requires a license to
download and use the software. Open Source software will frequently
have license terms that require the licensee to grant back certain

. . Free & Open Source
rights to the open source community.
- - . g (FOSS)
Freeware” refers to software available at no charge but not
distributed as Open Source. Freeware often comes with license
restrictions that forbid or restrict sharing. There is no agreed-upon set
of rights or licenses, and every publisher defines its own rules for
freeware.
Note: This excludes commercially available software provided free for Freeware
a limited time.

Commercially available software that is provided free of charge for a
limited time or with limited functionality.

2
%ﬁ Ruytheon © 2023 Raytheon Company. All rights reserved.
AnRTX Business

Approved for Public Release

Value of FOSS in Development

Reduction in custom code
— FOSS capabilities and features can now be considered commodity

— Interfaces to FOSS are generally available as reusable low code/no code

« E.g. Kafka connectors
Transferable knowledge

— Mature tooling likely to be available on multiple programs and companies {c» h {3
. & &
» E.g. DevSecOps tool chains can be common ﬁ

— Documentation and best practices are in abundance from public sources

Defect introduction and correction timeframe e
— ¢

— Most impactful issues addressed by the community
— Source code for proposed changes can be available even prior to release build

Increased development speed
— Availability of example interface code can reduce trial and error Fl)

. o . O0—0
— Lessons learned from others using FOSS limits time spent taking bad paths \ e

uytheon © 2023 Raytheon Company. All rights reserved. 5
AnRTX Business

A R

Approved for Public Release

- ________0__0_0_0000000000_]
Value of FOSS in Operations
Coverity report shows open source

- System stability Can have significantly fewer defects
https://www.wired.com/2013/05/coverity-report

— Number of users of the FOSS package can show it is stable
— Stable versions are labelled so users can choose between that or the latest

» Stable well documented interfaces
— Most FOSS uses some sort of Semantic Versioning to indicate interface changes
— Disruptive changes are generally limited because of the large user base

— Documentation on interfaces is plentiful Apache NiFi can be scaled to process
C fici billions of messages a second
[}
Ode € ICIenCy Processing one billion events per second with NiFi - Cloudera Blog

— Community peer reviews identify inefficiencies, improving operational effectiveness
— Large user base locates and rectifies performance issues quickly, reducing resource requirements

* Reduced time to market
— Less development means less time
— Stable FOSS doesn’t need to be tested by you every system release for every feature

* You don'’t need to test a commodity, only that the system is using the commaodity (e.g. test drive the
car, not each tire)

N2
= Ruytheon © 2023 Raytheon Company. All rights reserved. 6
AnRTX Business
Approved for Public Release

- 001}
FOSS Value Depends on Organizational Agility

* The speed of FOSS can be no greater than the speed of your organization
— How many people have to approve a change?
— How much bureaucracy will there be

« Making changes and adapting to emerging FOSS is important
— Do you have to know everything at the time of the proposal?
— What if there is a newer FOSS package that may be better?

* Metrics can be misleading
— Are you locked in to Earned Value so experimenting could ‘look’ like a problem?
— Is up front cost of integration of FOSS going to disrupt the Integrated Master Schedule?

The benefits are clear, but can you really achieve them?

Iy
Raytheon © 2023 Raytheon Company. All rights reserved.
A - 7

Approved for Public Release

- 001}
FOSS can be great, can we get the benefits?

* Reduction in custom code + System stability

— FOSS capabilities and T62% — Number of users'® An old version can be
commodity — Stable versions are labe stable, but may have
that or the latest cyber or other risks

code/no code .
» Stable well documented interfaces
 Transferable knowledge _ Most FOSS U™
— Mature tooling likely to bE*8 How recent is the version? indicate interface

companies Are we working on ‘old’ — Disruptive changes are ¢ - - : e
regularly, jumping multiple [
— Documentation and best practid FOSS? user base ?najoryvjersicl)gnsgcan bg
sources — Documentation on interfa risky

» Defect introduction and correction timeframe « Code efficiency

Depends on how fast you

can get FOSS integrated
— Interfaces to FOSS are general

Documentation is plentiful
but if you don’t update

If you can’t or don’t

SILLSSULEUMEEEIESEL L ™ Ag the FOSS community — Community peer reV update regularly, your
— Source code for proposed charRiN GRS MO AEE Rez=1) _ Large user base locates a version c?ould 3{_;3{/6
to release build you get them in house? quickly inefficiencies

* Increased development speed . Reduced time to market
— Availability of exampre \ Lessons learned may be — Less developmSugaans gy el ashe e o
— Lessons learned from others to update to the latest — Stable FOSS doesn’t 118 new features in a timely

bad paths :
version... can you? release for every feature manner can mean

Qi R UK UNEEWRCRERE: jmplementing yourself and
%& Ruytheon © 2023 Raytheon Company. All rights reseuging the Commodity then baCk|ng |t Out |ater

AnRTX Business
Approved for Public Release

- 1]
FOSS Integration in Non-Agile Environments

« Considerations for non-Agile environments
— When is the FOSS selected?
— What happens when FOSS capabilities change?
— Is there schedule available to patch and upgrade?
— How do you respond to security findings in the FOSS community?

« How stringent are the requirements and design?
— Can you make changes after Critical Design Review?
— If a new FOSS package comes available, are you able to take advantage?
— Are you able to prototype to burn down risk?

FOSS in non-Agile is possible, but many questions need to be answered

Iy
Ruytheon © 2023 Raytheon Company. All rights reserved. 9
A)

Approved for Public Release

FOSS Integration in Non-Agile Environments

* Risks in Waterfall FOSS usage

— FOSS packages could be implemented in development schedule but never
updated

— Duration it takes from security finding to system update could be long
— Configuration of the FOSS could be evolving as the team learns

* Could be cost and schedule implications
— Inability to take advantage of new features quickly

* Design can’t evolve as new FOSS packages become available
— Stuck at a moment in time of the Critical Design Review
— Prototyping and experimentation could be limited
— We have to assume the initial proposed architecture is accurate
There are risks in Waterfall as well as other development methodologies

W2
S'e Ruytheon © 2023 Raytheon Company. All rights reserved. 10
An i

Approved for Public Release

FOSS Updates in Waterfall

* Notional update timeline
A A A A)[Y*

CDR FOSS System FOSS Security \(FOSS System

Implemented Test Update X Update Retest

» Test cadence — How often are we running tests?

A Schedule Overrun
CDR FOSS System FOSS System FOSS FOSS System FOSs FOSS system
Implemented Test Configuration ~ Test Update Integrated Test Vulnerability Update Retest

Update Patch

 Number of changes planned in proposed timeframe
— Proposal: Initial integration + 6 month patching cycle

— Reality: Initial integration + security updates as they are located + feature updates
quarterly that could improve the system

N2
% Ruytheon © 2023 Raytheon Company. All rights reserved.
.)

Approved for Public Release

Principles behind the Agile Manifesto

What is “Agile” within this Context?

W >se principles:

satisfy the customer
‘inuous delivery

o
Manifesto for Agile Software Development > \\e ot con (e

1ts, even late in
‘ P .arness change for

_<titive advantage.

. software frequently, from a

We are uncovering better ways of developing e s ;:Z‘k‘f;‘;e"ft'.“‘“’thsf e
. . . . prerer I llmescale.
software by doing it and helping others do it. _
« 2 g i = i P Business people and developers must work
Through this work we have come to value: P e G together daily throughout the project.
‘ Build projects around motivated individuals.

Give them the environment and support they need.

Individuals and interactions over processes and * G\
5 4 . and trust them to get the job done.
Working software over comprehensive doc: QQ X g it i el 3ol
Customer collaboration over cort: o D [e s b
Responding to change - ‘\(\g

Agile processes promote sustainable development.

That is, while ther 06 The sponsors, developers, and users should be able
the l'ight. we valig G to maintain a constant pace indefinitely.
Continuous attention to technical excellence
htt //adil ifost / and good design enhances agility.
ps./fagiiemanitesto.org Simplicity--the art of maximizing the amount

\
WO I'kl n g S &o‘ qera of work not done--is essential.

. Pri nCi plet .aﬂd de I |Very focused The best architectures, requirements, and designs
emerge from self-organizing teams.
o Tech nical e ce and good des |gn At regular intervals, the team reflects on how
) to become more effective, then tunes and adjusts

its behavior accordingly.

Simplicity and constant improvement

N2
= Ruytheon © 2023 Raytheon Company. All rights reserved.

AnRTX Business
Approved for Public Release

Working software is the primary measure of progress.

12

- 1]
Agile Enables FOSS

» Agile allows updates to be prioritized based on need and value
— Backlog prioritization
— Customer awareness
— Architectural value

* Not all updates are equal
— Security updates: What is your exposure to the threat that was fixed

— Feature additions: Adding features when you need them, not when they are
available

— Bug fixes: If the bug is visible within the system context

Agile allows dynamic contextual responsiveness to FOSS updates

N2
% Ruytheon © 2023 Raytheon Company. All rights reserved. 13
AnRTX Business

Approved for Public Release

- 1]
Agile Enables FOSS

« Obsolescence
— Version obsolescence: Replacing outdated versions that are end of life
« Can be managed more effectively in Agile with fewer disruptions
— FOSS obsolescence: Removing unsupported or unused FOSS
» Taking components out of a system can be integrated into an Agile cadence
* Allows management of risk against resources and schedule

* Replacement
— Newer or better FOSS products can be planned for integration
— Side by side comparison within a Sprint allows for informed decisions
— Opportunities to run multiple FOSS options in parallel for incremental
transformation

The world is not static, Agile lets us roll with the FOSS flow

N2
= Ruytheon © 2023 Raytheon Company. All rights reserved. 14
AnRTX Busi

sssssss
Approved for Public Release

FOSS Enables Agile

* Not only does Agile enable FOSS, but FOSS

supports the Agile manifesto

« Early and Continuous Value
— FOSS features are well documented

— Enabling a feature can be implementing an interface to

the FOSS
« Changing Requirements

— New FOSS can be introduced to fulfill changing

requirements

— Changes in requirements can be evaluated against

FOSS capabilities

\
== Raytheon
AnRTX Business

© 2023 Raytheon Company. All rights reserved.

Approved for Public Release

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software 1s the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behavior accordingly.

https://agilemanifesto.org/

15

-]
. Principles behind the Agile Manifesto
FOSS Enables Agile

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery

e F req uent U pd ates offval i fo Fas.

Welcome changing requirements, even late in
development. Agile processes harness change for

— FOSS installation and configuration is generally trivial the customer' compeiive advaniage,
. Deliver working software frequently, from a
— Updating versions can be done within a sprint

couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals:
Give them the environment and support they need,
and trust them to get the job done.

* Providing a Stable Environment
— Development environment FOSS is widely used (e.g. comein iomaton o and v dvwpmens

team is face-to-face conversation.

I n teg rated Deve | O p m e nt E nVi ro n m e nt) Working software 1s the primary measure of progress.
Agile processes promote sustainable development.

— FOSS for testing can increase speed of adoption (e.g. Thoforsars, deyelopegiAufiENCRRRIEENIe

to maintain a constant pace indefinitely.

Se I e n i u m y C u Cu m be r) Continuous attention to technical excellence

and good design enhances agility.

— Documentation and example code are available for low Rt Sty e Ay
ra m p u p ti m e The best architectures, requirements, and designs

emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behavior accordingly.

\ T :
A Ruytheon © 2023 Raytheon Company. All rights reserved. https'//agllemanlfeSto'org/ 16

AnRTX Business
Approved for Public Release

FOSS Enables Agile
« Working Software

— FOSS software is well tested and widely used

— Low risk of getting a software package that doesn’t
work

 Technical Excellence
— FOSS provides clear interfaces for integration

— Architectures and designs become less complicated
and more “low code” integration

N2
= Ruytheon © 2023 Raytheon Company. All rights reserved.
AnRTX Business

Approved for Public Release

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

ontinuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--1s essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular intervals, the team reflects on how
to become more effective, then tunes and adjusts
its behavior accordingly.

https://agilemanifesto.org/ 17

-]
. Principles behind the Agile Manifesto
FOSS Enables Agile

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery

» Simplicity ekl

Welcome changing requirements, even late in
development. Agile processes harness change for

— Existing documentation means no guess work on what the customer's compeiitive advaniage.

Deliver working software frequently, from a

It WI I I d O couple of weeks to a couple of months, with a
preference to the shorter timescale.

— APIls and connection methods generally readily Busiaess people and developers must work

together daily throughout the project.

ava I I a b I e Build projects around motivated individuals.

Give them the environment and support they need,
and trust them to get the job done.

— Stringing FOSS together in known patterns can reduce SRRy ", Ry

conveying information to and within a development
C U StO m CO d e VO I U m e team is face-to-face conversation.

Working software 1s the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

) E m e rg e nt ArC h | te Ct u re S Continuous attention to technical excellence

and good design enhances agility.

— Experimentation and trial and error can be performed to < it >
find the “best” FOSS for the situation SR g TR
At regular intervals, the team reflects on how

— Side-by-side comparison removes paper trade studies o R e (S i
and guess work

N2
= Ruytheon © 2023 Raytheon Company. All rights reserved.
AnRTX Business

https://agilemanifesto.org/ .

Approved for Public Release

Not all Agile are the Same

e Scrum
— Adding items to the backlog assumes knowledge of releases

— Sprint duration drives the responsiveness
» Assume 2 week sprint, FOSS update comes out after sprint start so could be 4
weeks to release update

— Relative priorities and team capamty can impact if and when changes get deployed
Project Backlog Sprint Backlog \oc\ @r,;j/ Sprint Backlog b,
9

@ B I C E— g P C E—
Story A v R e, g
Story B E! Story A i c 3 g:gry g
Story C 3 Story C § Storrz .
Story D oy Story E 5 FOSS Story
Story E Story K =
= 4. Q@ Story L

@ Story N \o‘* St M

Story N St ‘\(f’
n xR I
“ - | | : | |
Sprint Duratioﬂw/ Sprint Duration I
FOSS Update Ang priot Displaces other Update integrated

\7 .
S & Ruytheon Available (© 2023 Raytheon Company. All rights reserved. Work per Scrum 19
AnRTX Business

Approved for Public Release

- 1]
Not all Agile are the Same

« Kanban
— Maintaining velocity and limiting Work in Progress requires FOSS prioritization
— Prioritizing each FOSS addition and update independently
* No set cadence as with other approaches
— Some updates may be ‘skipped’

Backlog On Deck Work in Progress Done

Kafka Docker Tomcat NiFi Kafka Jenkins Kafka

update 2405 10.1.1 1939 update install install

3.5.1 " 3 " 3.4.1 2.414 1 3.3.2
Zookee Kub Zooke Tomcat Zookee

per Tomcat Ubuntu openS ut em eper atch per
update || 11.0.0 23.04 USE ?;’2 update 1‘(’) 007 || update
3.9.0 ' 3.7.1 " 3.6.4

I
%:‘/é Raytheon

AnRTX Business

© 2023 Raytheon Company. All rights reserved.

Approved for Public Release

20

Not all Agile are the Same

« Scaled Agile Framework (SAFe)

— Balances intentional and emergent designs with focus on business value
— Establishes Program Increments that funnel content into release trains

» Uses Innovation and Planning iteration for new work
— States that personnel should not be planned at 100% capacity to allow adaptability

— Supports SAFe Scrum and Kanban teams as part of the Release Train

Agile Teams

80% capacity

(ART delivering Value) o o
[Define] [Build] [Validate] [Release] : @
i |

Repeating

... \teration
... Mteration _
_Mteration

— IP Iteration

(%)
a
c
3

i i =1 =
Known FOSS updates can be inserted in the ART =
P PI Objectives lj "fmﬂ
FOSS innovation can be performed in the IP iteration Master
Critical FOSS updates may be possible in
© 2023 Raytheon Company. All rights reserved. ‘spare’ Capacity 21

W
3”‘& Raytheon
AnRTX Business
Approved for Public Release

- 001}
Real World FOSS - the Need for Speed

 The Log4j example
Note: Previous update was
— How fast things change 03/06/2021

Log4j 2.14.1
— Bad guys get vulnerability notices too!
Eliminated shell capability
Fixed DOS
Disabled shell behavior by Corrected recursion Microsoft reports
default / Reports from China operators
/ Cryptolaemus of exploiting

Log4j 2.15.0 Log4j 2.16.0 Log4j 2.17.0 banking trojan attacks Log4j 2.17.1 vulnerability Log4j 2.17.2
12/06/2021 12/13/2021 12/17/2021 12/20/2021 12/27/2021 01/10/2022 02/23/2022

\ V V Y V % V

|
A A A A A A

Shell vulnerability Secondary DOS Third vulnerability Tenable publishes Fourth vulnerability =~ FTC mandates US
CVE-2021-44228 vulnerability with recursion report showing 10% of with remote code companies patch
12/10/2021 CVE 2021-45046 CVE 2021-45105 all assets are execution 01/04/2022

12/14/2021 12/18/2021 vulnerable CVE 2021-44832
CISA response R 12/22/2021 12/28/2021
12/11/2021

Had mitigation steps
Could you respond fast enough? What does it do to other planned work?

17/
Sz Ruytheon . © 2023 Raytheon Company. All rights reserved. 22
AnRTX Business *Data from https://nvd.nist.gov/
Approved for Public Release

Real World FOSS - Other Examples

 OpenSSL

0.5 — Vulnerability CVE-2014-0160 that allowed an attacker to read from the memory of
servers and clients running vulnerable versions of the software

 Bash shell

— CVE-2014-6271 allowed attackers to execute arbitrary code on a system

« Apache Struts y
— Multiple high profile vulnerabilities identified including CVE-2017-5638 for remote
command injection

N
N
N

 Libssh
— CVE-2018-10933 allowed attackers to bypass authentication including on Cisco
routers
There are many more, but this shows they can be very significant
5 Raytheon © 2023 Raytheon Company. Al ights reserved. 03

AnRTX Business *Data from https://nvd.nist.gov/
Approved for Public Release

FOSS Evolution — a Timeline

* The rate of change for FOSS packages depends on several
factors
— Maturity of FOSS
— Adoption rates
— Contribution rates
— Vulnerabilities

Rate of change can be a rollercoaster

* You can plan for a cadence, but can’t rely on it

— Sometimes there is a fast and furious update cycle

_ _ The best plans can fall apart
— New features added can result in a series of patches

Different FOSS packages update on different timelines

" Rayth -
aytheon © 2023 Raytheon Company. All rights reserved. 24

Approved for Public Release

FOSS Evolution - Exemplars
* Apache NiFi

— 2023 — 6 updates as of this research
— 2022 — 9 updates, 1 a month with some gaps

— 2021 — 7 updates, 2 months with 2 releases, remaining releases several months
apart

— 2020 — 7 updates, 5 of which were in the first 3 months

 Kubernetes

— Releases happen “approximately” 3 times a year
— Several instances where there are 5+ in a year

FOSS isn’t updated on your schedule, it is updated on the contributors

Iy
Ruytheon © 2023 Raytheon Company. All rights reserved.

Approved for Public Release

25

Q

Recommendations and Best Practices

* Planning for change and evolution Lﬁl

— Assume constant change and new technologies Have a plan and realize it will change
— Reserve capacity for modernization and experimentation

« Establish an update cadence
— Plan to update FOSS packages on a regular basis
— Updating patch versions is lower impact than waiting and moving multiple versions

concurrently
— If there isn’t an update, you can pull other work in =
 Monitor boards A cadence will help with ‘normal’ updates

— Security vulnerabilities, FOSS updates, community forums
— Proactive is easier than reactive

Plan for change and you won’t be disappointed!

Iy
Ruytheon © 2023 Raytheon Company. All rights reserved. 26
AnRTX Busi

sssssss
Approved for Public Release

]
Recommendations and Best Practices

* Avoid static thinking
— Know that what was bid/proposed may be outdated by the time you implement
— Evolving/emergent architecture isn’t a bad thing

 Learn from others

— Knowledge from people who have used the FOSS before can reduce ramp up

— External and internal “common configurations” and “lessons learned” can improve
reuse

« Encouraging experimentation and failures
— Buying down risk and failing fast helps ensure the right solution is found
— Experimenting with new or replacement technologies can help articulate the value

Trial and error can be invaluable

Iy
Raytheon © 2023 Raytheon Company. All rights reserved.
A ; 27

Approved for Public Release

\
== Raytheon
AnRTX Business

Thank You

© 2023 Raytheon Company. All rights reserved.

Approved for Public Release

28

Speaker Bio

Kurt Mohr is a Senior Engineering Fellow with over 20 years in Software
Engineering and Architecture spanning both commercial and defense.
Kurt is the Software Technical Director for Raytheon Common
Engineering.

He has a strong background in multiple Agile development
methodologies including Scrum, Kanban, and Scaled Agile. Kurt has
architectural experience with multiple forms of software systems
including cloud, bare metal, and embedded as well as highly scalable
distributed computing. Kurt holds multiple industry certifications in
addition to his formal degree pursuits in Aeronautical Computer
Science, Engineering Management, and Organizational Management

Iy
Ruytheon © 2023 Raytheon Company. All rights reserved. 29

Approved for Public Release

