

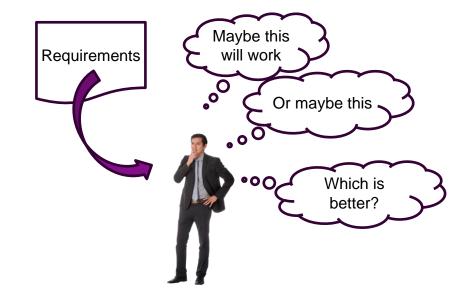
FireSat Design Trade Study: Effectively Bridging MBSE and MBD

Richard Chipman Digital Engineering Community of Excellence Leidos Innovations Center (LInC) Dynetics, a Leidos Company

Kevin Burns, Senior Application Engineer Kirsten McCane, Defense Industry Segment Manager MathWorks

Outline

Background


- Barriers to DE trade studies
- Approach
- Case Study
 - MBSE and MBD models
 - Model integration and data exchange
 - Solution methods
- ► Results
- Conclusions and Benefits

2

Background

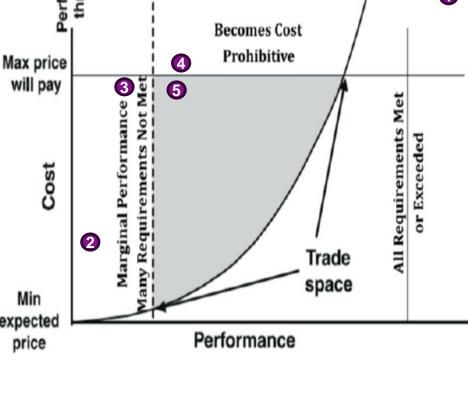
- Trade studies are essential to informed design decisions
- Characteristics of trade studies
 - Complexity of analyzing options
 - Multiple, multi-domain technical factors
 - Non-technical factors (CAIV)
 - Defining criteria for best
- Barriers to applying digital engineering
 - Formulation time & computational time
 - Identifying integration points between tools
 - Maintaining consistency between tools

3

Cost

- CAIV reality is sequential approach
 - Design/simulate 1 aspect/refine design
 - Compare cost of two options/choose
 - Simulate another aspect / repeat
 - Evaluate total cost at end

Min

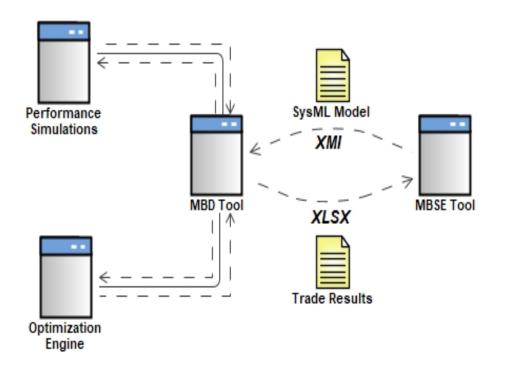

expected

price

Obstacles to Effective CAIV Trades

- Success of CAIV rests on iterative trade that effectively explore large portions of the feasible design space
- ► Goal is continual, iterative cost/schedule/performance trades
- Impediments
 - Time to construct, run & integrate simulations
 - Cost estimation dependence on design detail

Rist


Solution

set

PR Approval number: 23-LEIDOS-0915-26915

Approach

- Modern M&S MBD tools provide rapid creation and execution of detailed physics-based models
- Orchestrating the workflow between these MBD tools and MBSE tools is essential to performing integrated trade studies
 - Maintain central common source of truth for design data
 - Define methods for exchanging both data and model constructs
 - Choose tool in which trade is done (solutions compared)

Approved for Public Distribution

FireSat MBSE Model

Cameo Systems Modeler© No Magic, Incorporated, a Dassault Systèmes company

PR Approval number: 23-LEIDOS-0915-26915

Approved for Public Distribution

PR Approval number: 23-LEIDOS-0915-26915

Approved for Public Distribution

Concept of operation

- Architecture development
- System requirements development

Captures work products of concept

development phase of traditional

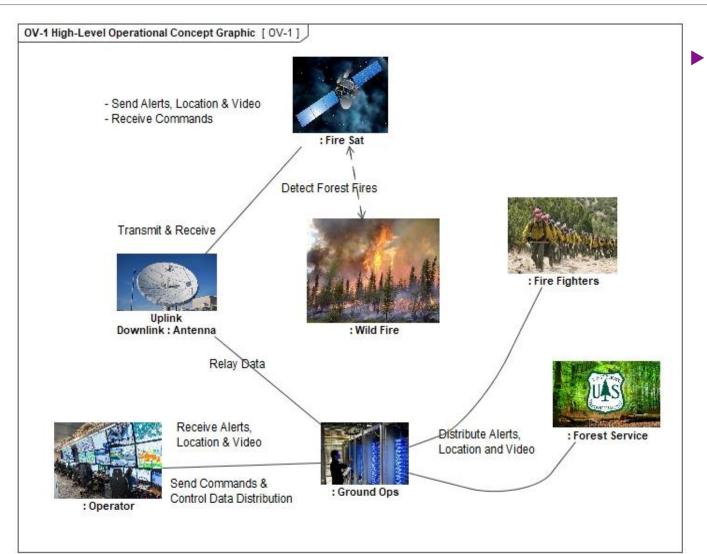
Systems Engineering process

Stakeholder requirements

Interface definition

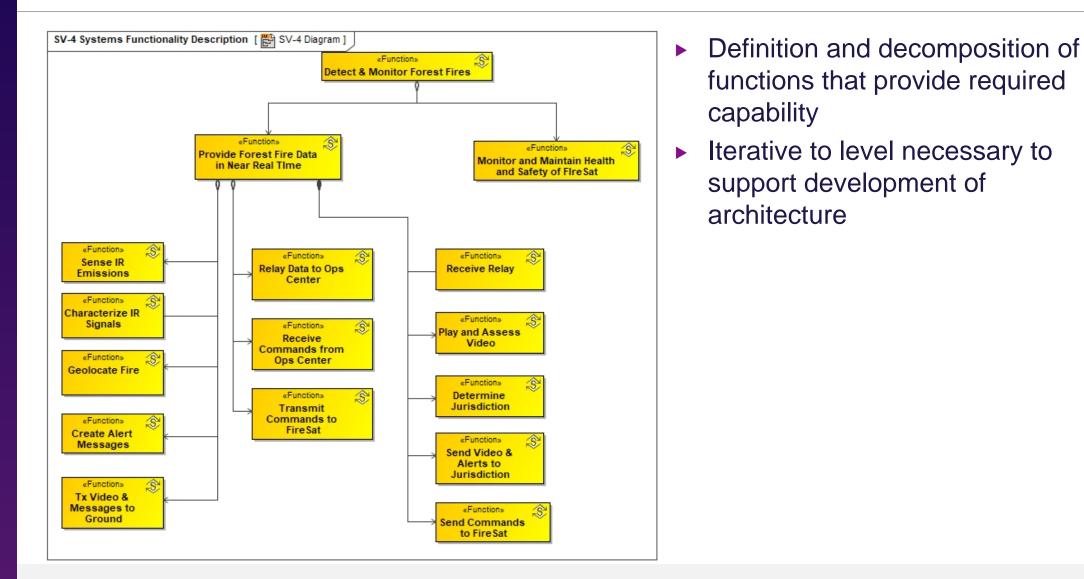
—

- Creates model elements embedded with design information
 - Structure
 - Compositional elements
 - Hierarchy
 - Interfaces / connectivity
 - Descriptive & quantitative parameters
 - **Behavior**
 - Functions
 - Flows across interfaces


Does not perform detailed analyses, simulations, or trades Can hold results and design truth resulting from trades

Purpose of MBSE Tool / SysML Model

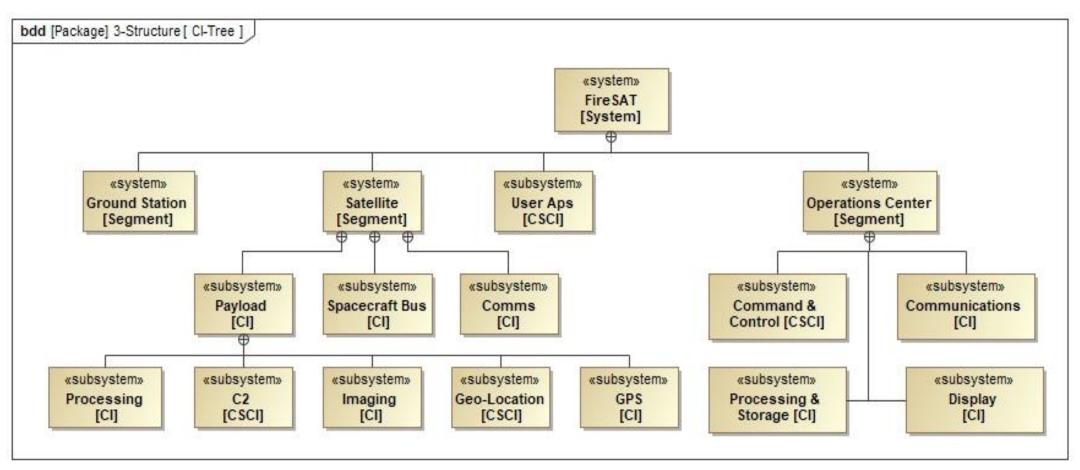
FireSat Mission


High Level Requirements

- Develop satellite-based system to detect forest fires
- Send alerts, real-time video, and geolocation data to ground
- Distribute to fire fighters and jurisdictions
- Minimal time to detect, down link and distribute
- Location accuracy

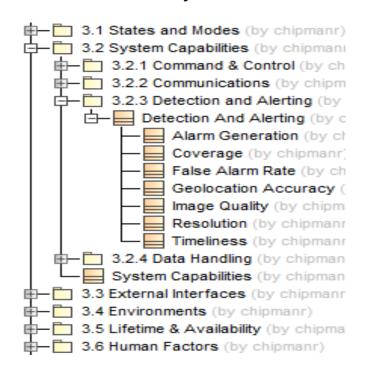
8

Functional Analysis


PR Approval number: 23-LEIDOS-0915-26915

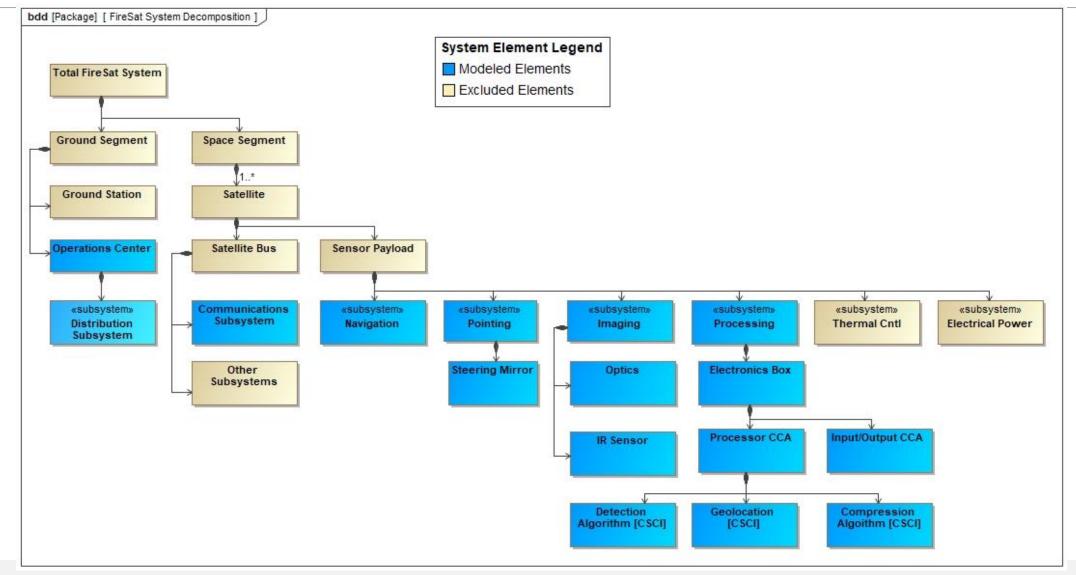
9

System Architecture


Hierarchical Definition and decomposition of architecture

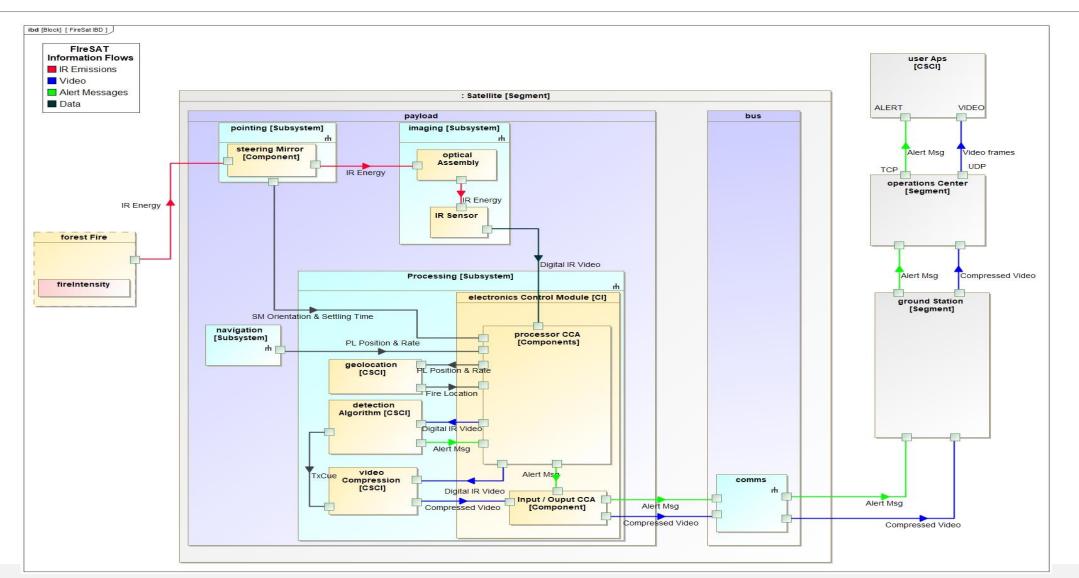
System Requirements

- Derived and decomposed system requirements
- Allocated to FireSat subsystems that must satisfy them


Name	Text	Satisfied By
System Requirements	SYSTEM REQUIREMENTS	
States and Modes	See Diagram	Scound Station [Segment] Satellite [Segment] User Aps [CSCI]
🗆 📃 System Capabilities	SYSTEM CAPABILITIES	
🗉 📃 Communications	COMMUNICATIONS	
🗆 📃 Detection And Alerting	DETECTION & ALERTING	
Detection Time	System shall detect a fire within 90 minutes of its reaching the threshold set for IR Intensity	ImagingNavigationPointing
Geolocation Accuracy	System shall locate a fire within 1 km of its epicenter	NavigationPointingImaging
Coverage	Coverage of specified forest areas within the US at least twice daily.	BusImaging
Probability of detection	The system shall detect 80% of fires that reach the threshold set for IR intensity	ImagingProcessingNavigation
📙 False Alarm Rate	The system shall identify forest fires with less than 20% within 8 hours with less than 10% false positives	Maging Processing
Alarm Generation	Within 20 minutes of detecting a fire, the system shall generate and transmit alerts to end users	Processing
📙 Image Quality	The sensor shall sense thermal emissions with a sensitivity less than 150W (TBD), and a resolution of less than 3 miliiradians.	Maging Pointing
🗉 🔜 Data Handling	DATA HANDLING	
Command and Control		
Command & Control	Ops Center personnel shall be able to issue commands to the satellite to point the sensor to a chosen location on the earth's surface.	Manual & Control [CSCI] Processing & Storage [CI] Processing

PR Approval number: 23-LEIDOS-0915-26915

11

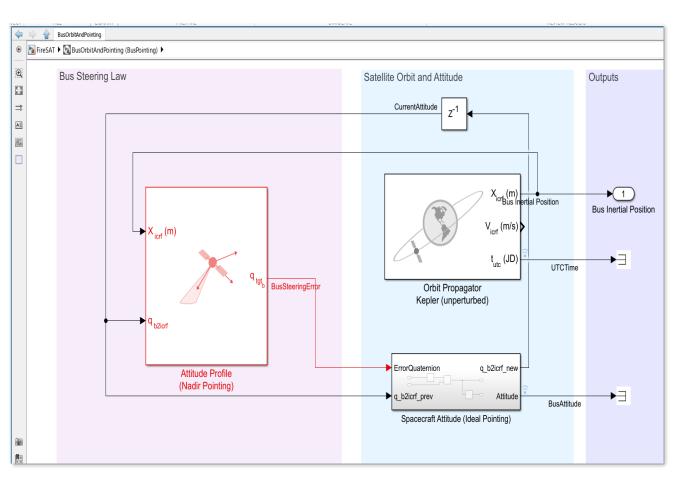

Elements Modeled in Trade

Model Signal Flow from Fire to Responder

FireSat MDA Model

MATLAB®, Simulink®, System Composer *MathWorks, Inc.*

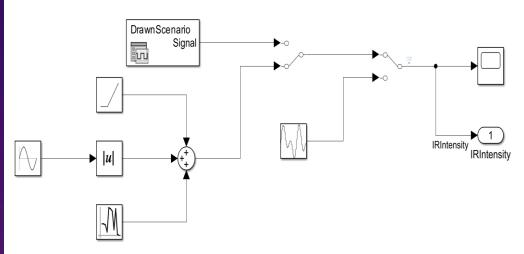
PR Approval number: 23-LEIDOS-0915-26915

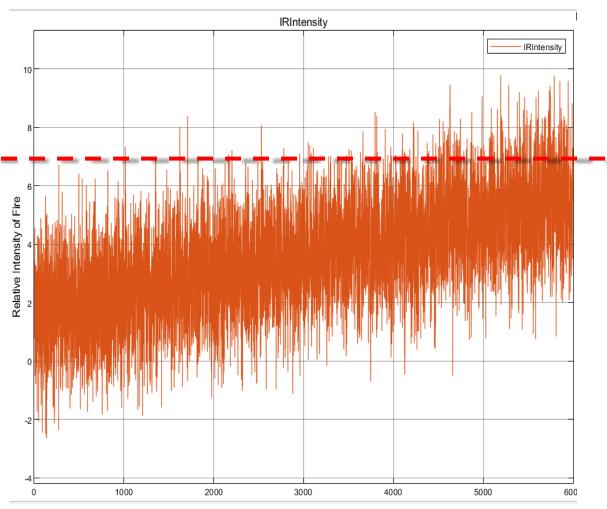

Approved for Public Distribution

Satellite Orbit and Pointing Simulation

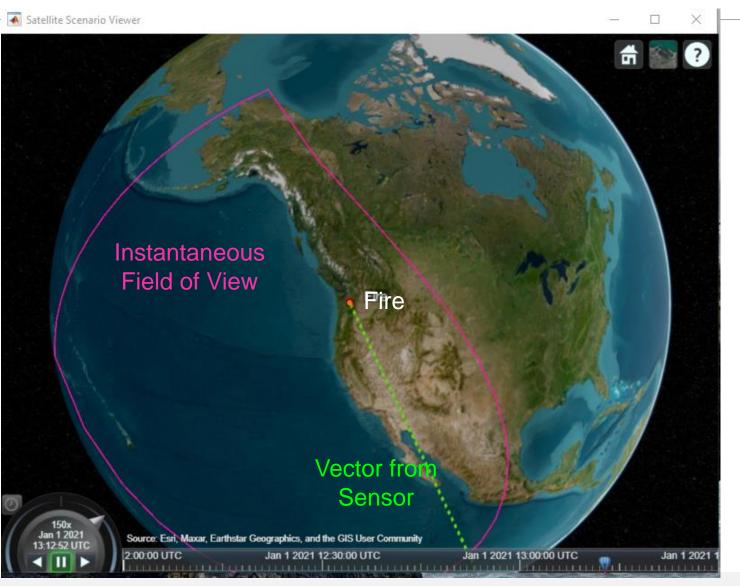
- Satellite Dynamics Options
 - Geostationary
 - Kepler Orbit*
- IR sensor with gimbaling mirror views earth surface
- Gimbal Options
 - Fixed
 - Continuous Sweep
 - Periodic Discrete Pivots*

*Chosen for this study




Fire Simulation

- Growing Intensity with random noise fluctuations
- Detection threshold



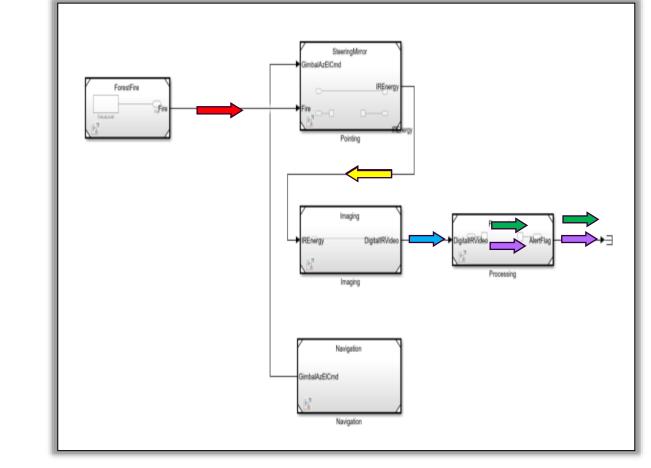
Coverage and Detection Computed in Simulation

 Sophisticated, complex, physics-based simulations and analyses are needed for meaningful trade studies

PR Approval number: 23-LEIDOS-0915-26915

Approved for Public Distribution

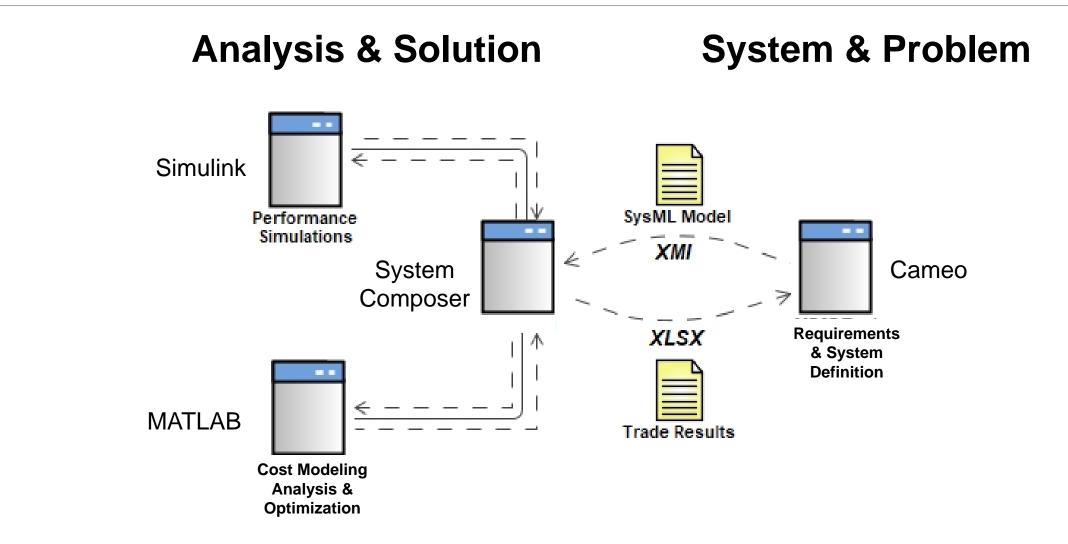
Details Matter


- Design parameters passed in SysML model feed the simulation
- Simulation results analyzed to compute KPPs
- Using same parameters, MATLAB computes costs of each design variant

- IR Radiation from Fire

- Light Guided by Optics
- Images Captured and Digitized by FPA
- Digitized Images Processed by Algorithms
- Threshold Exceedances Trigger Alerts
- Alerts & Video Sent to Earth via Bus Comms
- Routed to Fire Fighters

Signal Flow Model


Signal Paths

Model Integration and Data Exchange


Cost Models

Subsystem Costs Modeling

Trade Study Formulation and Solution Methods

Scope of Trade Study

- Key Performance Parameters (KPP)
 - Area Coverage
 - Accuracy in Determining Fire Location
 - Time to Detect Fire
 - Probability of Fire Detection
 - Probability of False Positives
 - Cost
- Subsystems Affecting Metrics
 - Navigation
 - Pointing
 - Optical
 - Imaging
 - Processing (not in scope)

- Contributing Factors
 - Orbital Parameters
 - Field of View
 - Pointing Error
 - Navigation Error
 - Focal Plane Array
- Design Parameters
 - IMU Angular Accuracy
 - Optics FOV and Aperture
 - FPA Number of Pixels

Mapping Design Parameters to Subsystems

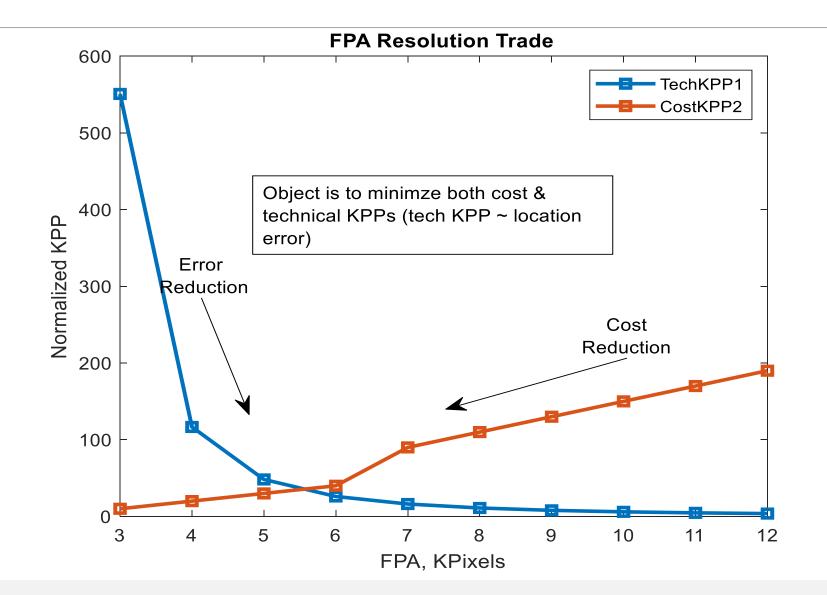
	Pointing	Navigation	Imaging	Subsystem	Processing	Processing	
	Subsystem Subsystem		Optics	FPA	HW	SW	
Design Elements	Gimbaled Mirror	IMU	Lens	FPA	Processors	Algorithms	
Design Parameters	TypeSpeed	 Angular Error 	FOVAperture	 nPixels Edge Effects	TypeNumberSpeed	SLOCComplexity	
Coverage	\checkmark		\checkmark	\checkmark			
Fire Location Accuracy	✓	✓	✓	✓		\checkmark	
Time to Detect	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Detection Probability		\checkmark	✓	✓		✓	
Probability False Positives			✓	\checkmark		\checkmark	
Cost	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

Multi-Objective, Multi-Variable Optimization

- Solution Space
 - Many feasible solutions
 - May have multiple optimal solutions
 - May be non-continuous
 - May have local maxima or minima
- Solution Methods
 - Many approaches and techniques:
 - Exhaustive search, non-linear programming
 - Bayesian optimization, *Pareto optimization*, particle swarm optimization
 - AI, Machine learning, self-organizing mapping, and genetic algorithms
 - Choice influenced by available resources and time constraints

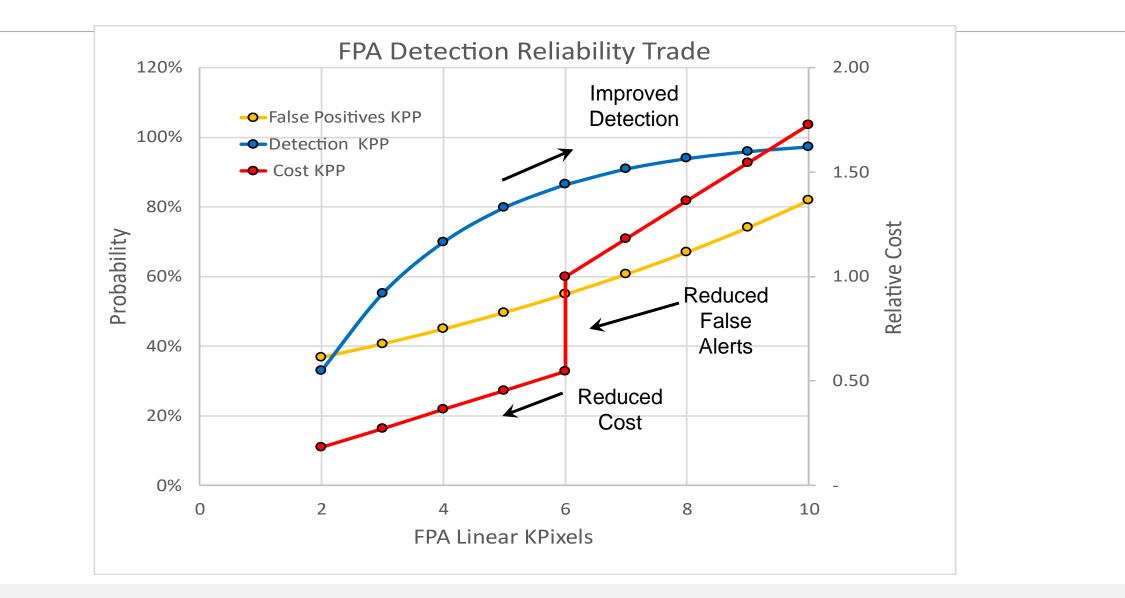
M&S Results

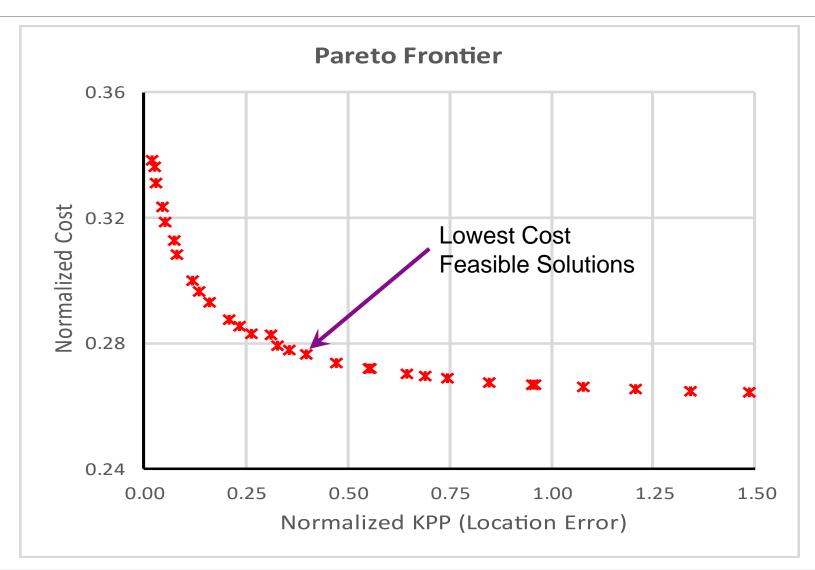
Optimal solutions



PR Approval number: 23-LEIDOS-0915-26915

Approved for Public Distribution


Trade on FPA Resolution


Multiple KPP Trade

Pareto Front Aperture and IMU Design Parameters

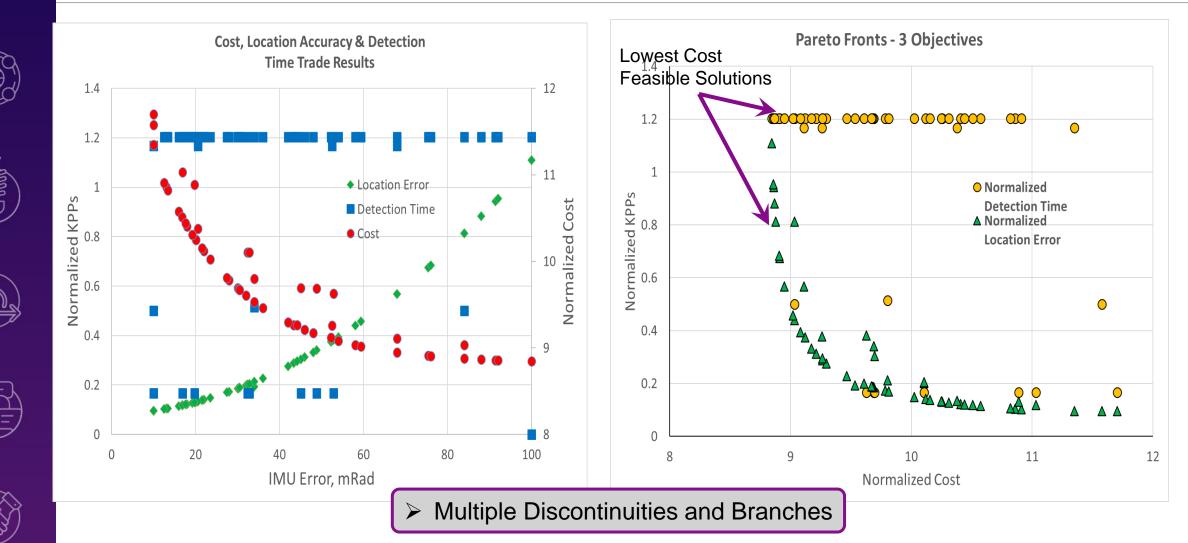
Evaluation against Requirements

	System	requirements	included	KPPs on
--	--------	--------------	----------	---------

- Detection Time (<90 min)
- Location Accuracy (<1 km)
- Probability of Detection (> 80%)
- Design target chosen for cost KPP
- KPP objectives set in MBSE tool
- Pareto front solutions from M&S
 - Exported to MBSE tool
 - Re-normalized to align with requirements
 - Evaluated against the KPPs

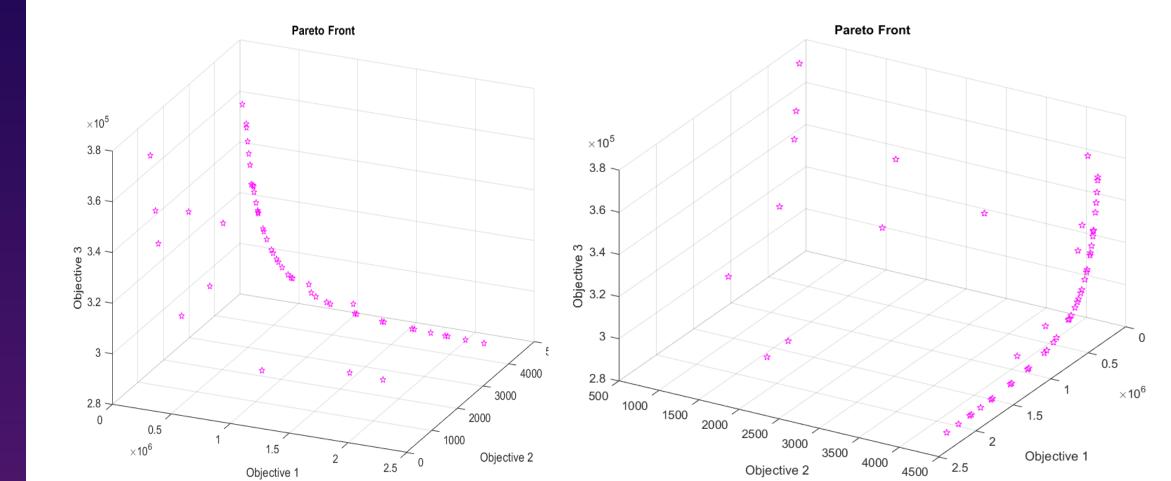
Name	Text	Satisfied By
🗆 🔜 System Requirements	SYSTEM REQUIREMENTS	
States and Modes	See Diagram	Ground Station [Segment] Satellite [Segment] User Aps [CSCI]
🗆 📃 System Capabilities	SYSTEM CAPABILITIES	
🗉 📃 Communications	COMMUNICATIONS	
🗆 📃 Detection And Alerting	DETECTION & ALERTING	
Detection Time	System shall detect a fire within 90 minutes of its reaching the threshold set for IR Intensity	 Imaging Navigation Pointing
Geolocation Accuracy	System shall locate a fire within 1 km of its epicenter	 Navigation Pointing Imaging
Coverage	Coverage of specified forest areas within the US at least twice daily.	Bus Bus Imaging
Probability of detection	The system shall detect 80% of fires that reach the threshold set for IR intensity	 Imaging Processing Navigation
🔚 False Alarm Rate	The system shall identify forest fires with less than 20% within 8 hours with less than 10% false positives	Imaging Processing
Alarm Generation	Within 20 minutes of detecting a fire, the system shall generate and transmit alerts to end users	Processing
🔲 Image Quality	The sensor shall sense thermal emissions with a sensitivity less than 150W (TBD), and a resolution of less than 3 miliiradians.	ImagingPointing
🗉 🔜 Data Handling	DATA HANDLING	
🗆 🔜 Command and Control		
Command & Control	Ops Center personnel shall be able to issue commands to the satellite to point the sensor to a chosen location on the earth's surface.	Command & Control [CSCI] Processing & Storage [CI] Processing

Results Returned to MBSE Model


- Results exported from MATLAB into Cameo using Excel format
- Parametric diagram used to compare predicted KPPs (cost and accuracy) with their required values
- Instance table flags pass/fail ratings of each solution

△ Name	aperture : Real	IMUe : Real	: CostObjective	: KPP1Objective	Cost : Real	Location Error : Real
0 1	6.69	24.19	fail	pass	0.301	0.1181
D 2	6.84	15.22	fail	pass	0.32	0.0467
0 3	6.69	32.19	pass	pass	0.29	0.2096
□ 04	6.69	48.19	pass	pass	0.27	0.4731
05	6.69	56.19	pass	pass	0.27	0.6462
□ 06	6.69	64.19	pass	pass	0.27	0.8481
0 7	6.69	40.19	pass	pass	0.28	0.3278
□ 08	6.69	52.19	pass	pass	0.27	0.5561
0 9	6.69	72.19	pass	fail	0.27	1.0796
💷 10	6.69	26	fail	pass	0.3	0.1365
😑 11	6.69	42	pass	pass	0.28	0.3583
1 2	6.69	60.19	pass	pass	0.27	0.7435
📼 13	6.69	76.19	pass	fail	0.27	1.207
📼 14	6.69	28.19	pass	pass	0.29	0.1605
📼 15	6.69	44.19	pass	pass	0.28	0.397
= 16	6.69	80.19	pass	fail	0.26	1.3422
📼 17	6.69	34	pass	pass	0.29	0.234
💷 18	6.69	36.19	pass	pass	0.28	0.2653
= 19	6.69	68.19	pass	pass	0.27	0.96
20	6.84	19.22	fail	pass	0.31	0.0745
= 21	6.69	92	pass	fail	0.27	1.7904
E 22	6.69	58	pass	pass	0.27	0.6894
E 23	6.84	11.22	fail	pass	0.34	0.0253
E 24	6.69	20.19	fail	pass	0.31	0.0822
E 25	6.72	16.22	fail	pass	0.32	0.053

Optimization with Three Objectives



Pareto Frontier Plotted in Three Dimensions

Results for Three Objectives

 Objectives 	
--------------------------------	--

- Accuracy locating fire
- Time to detect fire
- Cost
- Fewer optimal solutions

	△ Name	aperture	IMUe	nKPix	Accuracy Objective	Time Objective	Cost Objective	Location Error	Detection Time	Cost
ating fire	— 11	6.6563	16	2	pass	fail	fail	0.1152	1.2034	10.5744
-	1 2	6.6563	16.75	2	pass	fail	fail	0.118	1.2034	10.5098
ct fire	1 3	6.6563	32	2	pass	fail	pass	0.1992	1.2034	9.6078
	1 4	6.6563	20.125	2	pass	fail	fail	0.1322	1.2034	10.2472
	1 5	6.6563	18	2	pass	fail	fail	0.123	1.2034	10.4073
	1 6	6.6563	13	2	pass	fail	fail	0.1049	1.2034	10.8584
solutions	= 17	6.6563	22	2	pass	fail	fail	0.141	1.2034	10.1195
\longrightarrow	= 18	7.0938	48.8438	3	pass	pass	pass	0.3405	0.1668	9.6886
	😐 19	6.6563	28	2	pass	fail	pass	0.1736	1.2034	9.7824
	E 20	6.6563	21.5	2	pass	fail	fail	0.1385	1.2034	10.1524
	E 22	6.6563	91.4063	2	fail	fail	pass	0.9436	1.2034	8.8596
	E 23	6.6875	52.1875	2	pass	fail	pass	0.375	1.2034	9.1212
	2 4	6.6563	36	2	pass	fail	pass	0.2279	1.2034	9.4649
	= 25	6 6563	30	2	pass	fail	pass	0 186	1 2034	9.6908
\rightarrow	E 26	6.9688	34	2.375	pass	pass	pass	0.2132	0.515	9.8023
	= 27	6.9063	20.5313	2.125	pass	tail	tail	0.134	1.16/3	10.3783
	28	6.6563	13.375	2	pass	fail	fail	0.1061	1.2034	10.8205
	E 29	6.6563	46	2	pass	fail	pass	0.3128	1.2034	9.2108
	30	6.6563	54	2	pass	fail	pass	0.3947	1.2034	9.0817
	= 31	7.0938	16.8438	3	pass	pass	fail	0.1184	0.1668	11.0316
	□ 32	6.6563	30.25	2	pass	fail	pass	0.1877	1.2034	9.6799
	3 3	6.6563	76	2	pass	fail	pass	0.6842	1.2034	8.9066
	- 34	7.2012	32,4063	2.625	pass	pass	fail	0.202	0.1668	10.1062
\longrightarrow	3 5	6.8125	45.0625	3.25	pass	pass	pass	0.304	0.1668	9.6946
	□ 36	6.6563	30.5	2	pass	fail	pass	0.1893	1.2034	9.6693

Detection

Conclusions / Benefits

- MBSE/MDA <u>simplifies</u> and accelerates trade studies
 - Provides holistic representations of systems, extensible to SoS's
 - Source of truth for design parameters; collection point for performance predictions from external high-fidelity M&S tools
- Advantages of Integration with high fidelity M&S tools
 - Ability to perform large numbers of trade studies rapidly
 - XMI standards-based interface to exchange models and design variables
 - Straight-forward implementation of cost modes
 - Optimization tools
 - Wider exploration of the design space leading to more optimal solutions