DoD and Geothermal

Clean, base-load energy generation inside the wire

Ken Wisian Ph.D., Major General USAF (ret)

Associate Director, Bureau of Economic Geology

The University of Texas at Austin

ken.wisian@beg.utexas.edu

Distribution A: Approved for Public Release

A solvable critical vulnerability

- <u>Problem</u>: The Department of Defense (DoD) has a critical need for unbreakable power, but also a nearly complete dependence on commercial power suppliers. This creates an unacceptable strategic vulnerability
 - A successful attack on the US power grid or a direct hit by a Solar Coronal Mass Ejection, could hobble the DoD
- <u>Background:</u> Geothermal energy; clean, baseload electricity generated off the heat of the Earth, has been a small part of the US and world energy picture for a hundred years – that is *changing now!*

WikimediaCommons <u>https://commons.wikimedia.org/wiki</u> /File:NesjavellirPowerPlant_edit2.jpg#/media/File:Nesjav ellirPowerPlant_edit2.jpg

<u>Solution:</u> Construct geothermal power generation plants "inside the wire" at DoD facilities.

- These plants possess significant advantages:
 - <u>Physical security</u>: on-base location is secure and includes the ability to rampup security as needed
 - <u>Electro-Magnetic Pulse (EMP) resiliency</u>: the short electricity transmission distances largely eliminates EMP issues
 - <u>Baseload energy supply:</u> geothermal power is "always on" and dialable up to maximum capacity
 - <u>Self-contained</u>: no outside resupply (petroleum) needed, indefinite lifetime, minimal maintenance
 - <u>Scalable</u>: Need more power, drill another well (to an extent)
 - <u>Safe:</u> no combustion or radioactivity involved
 - <u>Green:</u> little to no pollution/greenhouse gas emissions

Intro – Earth's Heat

- ~47TW of heat flow 24/7 out of the Earth
- Even better thousands of times this amount of energy is extractable heat stored in the upper 10 km of the crust

GeoVision, DOE

Geothermal Systems

(we are not talking heat pumps for your house)

- All you need to generate power is a temperature difference – between the rock at depth and the surface
 - In most power plants the heat is from burning fossil fuel or uranium, for geothermal we get the heat (free) from the Earth
- Conventional Geothermal
 - Mines hot water or steam in the ground
- Geothermal Anywhere

Economic

TEOLOGY

- Mines the heat in the rock
- Enhanced Geothermal Systems (EGS), Advanced Geothermal Systems (AGS), <u>Closed Loop</u> Geothermal Systems (CLGS) ...naming is not settled...
- Unlike wind & solar, All Geothermal are 24/7 – Baseload!!!

Intro – Plate Tectonics – *Conventional* Geothermal

- Determines the "Conventional" Resource Location
- US (west of the Rockies) is the world's largest producer of geothermal energy but it is <0.5% of the US grid –
- Geographically very restricted
- Mature industry

https://energyeducation.ca/encyclopedia/Geothermal_electricity#cite __note-6 Adapted from: R. Wolfson, "Energy from Earth and Moon" in *Energy, Environment, and Climate*, 2nd ed., New York, NY: W.W. Norton & Company, 2012, ch. 8, pp. 204-224

Geothermal Anywhere

- Uses an artificial circulation system to "hoover up" heat, concentrate it and bring to the surface
- Renewable to semirenewable
- Opens up much more of the Earth to viable geothermal production

Why the excitement now?

Advances in Oil & Gas drilling, engineering, stimulation and supporting areas (years ahead of *conventional* geothermal) Decarbonization requirements, ESG, Stakeholder Pressure

Geothermal Anywhere

New methods for harvesting heat and

producing energy

Distribution A: Approved for Public Release

Advances in conversion of heat to electricity; Turbine/heat exchange fluids ThermoElectric Generators (thermocouples)

Courtesy of Eavor Image not to scale

Distribution A: Approved for Public Release

Recent Bureau work in Geothermal

- DoD / USAF / AFWERX / DIU
 - First new geothermal power plant design in decades
 - USAF now rates geothermal as the #1 new energy focus (above SMRs)
- Resource assessments USGS and Private Funding
 - Lots of BHT w/ its inherent problems
 - Working through Texas county by county to build thermal picture
 - Incorporating burial history, radiogenic production & lithology
- Induced seismicity monitoring DoD and State funding
 - Ongoing work in South Texas and Houston
- Coal Plant Conversion InnerSpace funding
- Big-data/ML applications
 - Great problem for ML
 - We have huge core and well log library
- Energy storage
 - Looking for project funder
- Direct Use
- System modeling
- Economics, Social/DEI/ESG, Powering CO2 capture and storage

The Future of Geothermal in Texas Contemporary Prospects and Perspectives

Edited by Jamie C. Beard, Esq. & Dr. Bryant A. Jones

https://cgmf.org/p/geothermalenergy-texas_report.html

- Vision an industry-funded research consortium to find and fill the science, technology, economics, policy, and entrepreneurship gaps needed to further develop the geothermal-anywhere ecosystem; led by the Bureau, the organization with the skills and proven track record to lead major enterprises
- Scope subsurface geology and engineering; surface power generation, grids, economics, and policy; direct heat applications for heating and cooling, agriculture, etc.; subsurface thermal storage; hybrid systems; etc.
- Principal investigators Ken Wisian, BEG; Shuvajit Bhattacharya, BEG; Silviu Livescu, Petroleum and Geosystems Engineering; Nicola Tisato, Geological Sciences

Why go after DoD?

- The perfect early adopter
 - <u>Prioritizes Effectiveness</u> over Cost Effectiveness
 - Can pay a premium (but you have to get to the right channel first-line folks are bound by cost effectiveness)
 - Comfortable with working leading edge technology
- The emerging "Geothermal Anywhere" paradigm, if proven, allows for scaling up geothermal power to an extent that will get DoD's attention
- Secondary
 - regulatory and permitting advantages and disadvantages
 - Relatively easy government \$\$ looks good to startups and VC
- Major note Direct use does not get much attention, but is easier, much more efficient and can significantly reduce electricity demand
 - Heat can be used for cooling!

Texas as a (non-limiting) example

- Variety of geologic / thermal settings across the state
- Many military facilities
- Good infrastructure
- Friendly environment
- Outside the "conventional" geothermal zone

US Air Force, AFWERX STTR Phase 2 (complete)

- Development of a **3MW** Geothermal Power Plant at **Ellington Field** (south side of Houston)
 - Led by Sage Geosystems (start-up)
 - Proof of concept for several component technologies
- In the Gulf Geopressure Zone
 - Other commercial projects brewing along this play?
- A successful project in Houston, "Oil City", will get attention that a similar project further west would not

More on DoD activity

- **DoD** (DIU) has issued a call for prototype plants at four 6 bases
 - Not putting up much money, but promising a non-compete PPA upon successful demonstration
 - JBSA (San Antonio)
 - Mountain Home, ID
 - Fort Irwin, CA
 - Fort Wainwright, AK
 - Two Navy Bases
- USAF SAF/OEA rates geothermal as the #1 new energy prospect above Small Modular Reactors (SMR)
- Note: there is a Navy Geothermal Program Office that has run a field in California for decades they need more resourcing

Innovation Principles & Projects

INNOVATION: PRINCIPLES

- Resilience and Mission Focused
- Creatively Leverage All Acquisition Tools (e.g., Other Transaction Authorities)
- Leverage and Combine All Appropriate Funding for Comprehensive Solutions (DAF, Vendor, Federal agencies, State, Financiers)
- Move at Commercial Speed
- Long-Term Planning Horizons with Concrete Near- and Medium-Term Milestones (e.g., geothermal pilots)
- Teaming for Success Air Force, DoD, Federal Gov't, States, Utilities, Vendors

INNOVATION: PRIORITY PROJECTS

- Closed-Loop Geo (prototypes)
- Small Modular Reactors
- Long-Duration Energy Storage
- Green Hydrogen
- Electric Vehicle Support Equipment (EVSE)

The potential

- As happened with O&G multiple times (most recently the shale/frac boom) we are on the edge of a paradigm shift
- Can significantly and rapidly diversify our grid (rapid scale-up)
 - Currently not in most energy forecasts!
- Perfect pivot for O&G workforce

Bottom Line

- Geothermal Power can solve a major strategic and systemic vulnerability
- DoD has realized this and is starting to act
- Potentially huge civil benefit to DoD as the early adopter
 - Think about technology that the military and NASA have led the way on

https://goenergylink.com/blog/what-is-geothermal-energy-storage/

By the way – there is geothermal in space

Contact: Ken Wisian Ph.D., Major General USAF (retired) Associate Director, Bureau of Economic Geology The University of Texas at Austin <u>ken.wisian@beg.utexas.edu</u>

