

Things You Don't See in the PASEG (yet)

Yancy Qualls

Engagement Director

Humphreys & Associates, inc.

yancy.qualls@humphreys-assoc.com

September 13, 2023

DISTRIBUTION A: Approved for Public Release

Navy Seals

Integrated Master Schedule

Integrated Master Schedule

IMS Components

Generally Subjective Objective Objective/Subjective Percent Complete Actual Start Estimate to Complete ٠ ullet• Actual Finish Task Logic **Remaining Duration** ٠ ٠ • Forecast Start • Forecast Finish •

TFCI & CPLI Overview

Total Float Consumption Index (TFCI)

Critical Path Length Index (CPLI)

THE MISS

PAD – Project Actual Duration
CPTF – Critical Path Total Float
CPL – Critical Path Length

TFCI & CPLI Flaws

Total Float Consumption Index (TFCI)

Critical Path Length Index (CPLI)

The "Key Ingredient" (total float) to both TFCI and CPLI is highly subjective

Can You (instantly) Improve TFCI & CPLI?

Even though poor past performance may indicate increased forecasted durations, cutting durations until the project finishes on time will yield a "perfect" score

TFCI & CPLI Can Reward Poor Practices

You can do bad things to your IMS (unrealistically short forecasts) to improve TFCI & CPLI

Shifting Focus

(adjusted)TFCI = -

PAD

(Difference between the baseline and actual/forecasted start of the Critical Path)

11

(adjusted) TFCI & CPLI Calculations

Total Float Consumption Index (TFCI) CPL = 80 CPSV = -16CPSV = -16AD = 100 CPTF = 0

Critical Path Length Index (CPLI)

Challenging Forecasts

But if downstream forecasts seem improbable, how can we estimate a more realistic completion?

What is an IECD?

Son says he will arrive in time for Thanksgiving Dinner (6pm)

So far he is averaging 50 mph

If he drives 50 mph the rest of the way, he will arrive at 8:30pm

Will he make it?

IECD – Independent Estimated Completion Date

Most IECDs apply past (demonstrated) performance,

to the remaining work to calculate an independent estimated completion date (IECD)

But there is more than one way to measure past schedule performance (and remaining work)...

Independent Estimated Completion Date (IECD)

Objective

- Most are based on past (observed) performance

• Fast

- After initial set-up, they can often be run with little/no recurring effort

Accurate?

- Good question. Let's explore more.

Do you trust your schedule?

- How do you know if Subcontractor schedules are realistic?
- Even well-intentioned CAMs can provide overly optimistic (or pessimistic) forecasts.
- Are we marching to a deliverable requirement that is unachievable?

Bottom Line:

A schedule can be made to say almost anything!

Would you believe this?

Years 1 and 2 of a project	Now Years 3 and 4 of a project
BCWP = \$200,000,000	BCWR = \$200,000,000
ACWP = \$246,356,112	ETC = \$153,643,888
CV = (\$46,356,112)	CV = \$46,356,112

VAC = Perfect!

How about this?

Project Completion = Perfect!

Simulated Project Data

There are Many IECD Formulas

Questions to Answer

- Is one type of IECD consistently more accurate?
- When a formula uses an "average", over what period should that average be taken?
- Are some IECDs better early in the project, and others later?
- Does it matter is the project is running early or late?

One More Caveat

Additional real-world considerations not modeled in these simulations:

- Shift in project phases (i.e. Design to Manufacturing)
- Start/finish of subcontracted effort
- "Reset" events (OTB/OTS, single-point adjustments)
- Significant changes in resources (more, less, skill)
- Heroic efforts

These are all considerations when determining the trend window (i.e. 2-month average vs. 6-month average)

IECD Simulation Results

How often did each IECD formula predict closest to the actual project completion?

- BCWS 2.96%
- BCWP 11.68%
- Don't Worry we will finish "On Time" 13.63%
- **SV_t 29.56%** (most stable)
- **SPI_t 42.17%** (most accurate)

The goal of an IECD is not to replace the IMS, but to spur conversations on IMS reliability

DISTRIBUTION A: Approved for Public Release

Not an IECD

(just a typical IMS)

This Is the Future of Scheduling (not the now)

• This presentation is not intended to provide final answers

- But hopefully some more paths to explore

Questions

