

Accuracy of IEACs Study

EVM data captured from real

projects. DoD, NASA, DOE Projects IEACs performed at 25%, 50%, and 75% complete.

DOE IS DIFFERENT

COMPARE TO FINAL ACWP

IEACs compared to final ACWP not to PM EACs

(PM EACs not available in enough cases and not really relevant)

IN THE BALLPARK?

A 'rule-of-thumb' method for testing the reported EAC.

USE OF IEACs

One recommended use of IEACs is to check that "contractor" or "CAM" EAC is not unreasonable, i.e. it fits into a ballpark of IEACs. If the "contractor" or "CAM" EAC was lower or higher than all IEACs that might indicate it is not in line with demonstrated performance and remaining work and should be reviewed in detail.

Accuracy of IEACs Study

MAJOR CONCLUSION

THE IEACS CAN BE USED FOR A BALLPARK* WHEN COMPARED TO FINAL ACWP OUTCOME

* THE FINAL ACWP FALLS WITHIN THE IEACS AT 25%, 50%, AND 75% FOR NON-DOE PROJECTS ENOUGH TIMES TO BE INDICATOR

WHAT ELSE DID WE LEARN?

- HOW ACCURATE ARE THE IEACs?
- DO THEY TEND TO BE CONSISTENTLY OVER OR UNDER?
- IS ONE IEAC MORE ACCURATE THAN THE OTHERS?
- IS THERE A "MAGIC FORMULA"?
- WHAT ELSE CAN WE FIGURE OUT?

25% POINT = WITHIN +/- 10% OF FINAL ACWP

50% POINT = WITHIN +/- 7% OF FINAL ACWP

75% POINT = WITHIN +/- 5% OF FINAL ACWP

original moni next race. accuracy nout making no m

DISTRIBUTION A: Approved for Public Release

ACCURACY BANDS

Interesting Parallel Study

Quantified Benefits of Earned Value Management

(iEEE Aerospace Conference Paper: ieeexplore.ieee.org/document/10115759)

Matthew Evans Jones matthew.jones@jhuapl.edu

- Assistant Group Supervisor of Finance and Administration for JHU/APL's Space Exploration Sector
- Currently responsible for directing the efforts of JHU/APL's validated Earned Value Management System and Scheduling efforts

Interesting Parallel Study

Conclusions: 1. EVM iEACs provide advanced warning of cost growth across industries (DoD & NASA) 2. Advanced warning of future cost growth is less accurate and more delayed on projects with higher scope risk

Will investigate engaging Mr. Jones for further in-person update of findings at future NDIA IPMD meeting.

Predictive Accuracy

DoD Averages vs. NASA/APL Averages

Study	Data Set	Point in POP where iEAC predicts final EAC at ~5%	Advanced Warning 20% into Lifecycle
Christensen	39 DoD Production Contracts	~10% into POP	~60% of POP Advanced Warning
1996	25 DoD Development Contracts	~40% into POP	~45% of POP Advance Warning
Jones 2023	8 NASA/APL Contracts	~60% into POP	~35% of POP Advanced Warning

Includes Christensen data on development and production from 1996 plus Jones' 2023 data.

OVERALL ACCURACY ALL IEACS

OVERALL OPPORTUNITIES = 36 PROJECTS @ 3 % COMP POINTS WITH 6 IEACs (note some projects did not have data for all 3 measurement points).

540 TOTAL REAL OPPORTUNITIES245 WITHIN ACCURACY BAND245/630 = 46% ACCURATE

IEACs Employed in Study

IEAC #1 = BAC/CPI

```
IEAC #2 = ACWP + BCWR/(.2SPI + .8CPI)
```

```
IEAC #3 = ACWP + BCWR/(SPI*CPI)
```

IEAC #4 = ACWP + BCWR

IEAC #5 = ACWP + BCWR/[WEIGHT *SPI)+(WEIGHT

* CPI)] with

weight changing as % complete increases

IEAC #6 = AVERAGE OF #1 THRU #5

SCORE BY IEAC AT ALL POINTS (all projects)

SCORE BY IEAC (non-DOE projects)

SCORE BY IEAC (@25%) All projects

SCORE BY IEAC (@25%) Non-DOE

IEAC avg BALLPARK (@25%) Non-DOE

FINAL ACWP INSIDE PREDICTED BALLPARK

SCORE BY IEAC (@50%) All projects

IEAC avg BALLPARK (@50%) Non-DOE

7 UNDER U 0 5 OVER U 0 0 U 0 U ↓ 0 U 0 U 0 U 0 U 0

FINAL ACWP INSIDE PREDICTEDBALLPARK

U

OVER/UNDER FINAL ACWP BY EAC (36 opportunities non-DOE)

IEAC	OVER	UNDER
1	14	22
2	14	22
3	21	15
4	8	28
5	12	24
AVG	12	24

SCORE BY IEAC (@75%) All projects

SCORE BY IEAC (@75%) Non-DOE

0

0

FINAL ACWP INSIDE PREDICTED BALLPARK

U

U

U

U

U

To Provide Data or Help With the Study!

Paul.Bolinger@humphreys-assoc.com Brian.Kong@hq.doe.gov

