Advances in Atom Based Sensors for PNT

Dana Z. Anderson Founder & Chief Strategy Officer Infleqtion dana@infleqtion.com

Tough Act to Follow

- Datasheet from high-performance inertial measurement unit (IMU)
 - measures 6 axes
 - 3 acceleration
 - 3 rotation (fiber optic gyro, FOG)
- Reference: earth rate = 15°/hr
- Gyro
 - Sensitivity: ~10⁻⁵ earth rate
 - Dynamic range $\sim 2 \times 10^8$

IMU

- Tolerate 60 g accelerations
- 10 year life.
- Volume 1 ft³

	PERFORMANCE		
Spi	GYRO PERFORMANCE Bias Stability (1ơ)	0.0001 °/hr.	
CIF	Angle Random 🛛 🤇 Walk (EOL)	0.0005 °/√hr.	rtial Measurement Unit
PERI GYRO I	Scale Factor Stability	± 2 ppm	he CIRUS-A IMU's performance enhances all EO/IR platforms ability to antify and defeat threats from the air and on the ground.
Bias St Angle F	Scale Factor Linearity	10 ppm	
Walk (E Scale F	Angular Rate Range 🤇	> 45 °/sec	
Scale F	Acceleration Range	± 8 °/sec²	
Angula Accele ACCEL	ACCELEROMETER PERF Range (g's)	60 g	
Range Bias (m	Bias (milli g's)	2 µg	-00-1-00-
Scale F	Scale Factor Stability	300 ppm	and the second
SYSTEI Bandw Operat	SYSTEM PERFORMANCI Bandwidth	E > 500 Hz	
CHA	Operating Life	10 yrs.(1,400 t	No aver
PHYSIC Weight	CHARACTERISTICS		
Dimens	Interface	Custom serial	
Power	BUNGLOAD		
ENVIR(Temper Oj	Weight	18 lb., 8.165 kı	
No Randor Humidi	Dimensions	11.9 in. L x 11. 30.23 cm L x 2	L-3 Space & Navigation
	Power	10 W @ 28 VD(450 Clark Drive Budd Lake, NJ 07828
1			

Quantum Matter — Ultracold Atoms

- Laser cooling is the starting point for much of atom-based quantum technology.
- No cryogenics, no liquid anything
- Cold, very cold, and ultracold
 - when temperature is no longer meaningful.
 - behavior must be described by the laws of quantum mechanics.
- There are many forms of ultracold matter
 - Bose-Einstein condensate (BEC) is one of them.
 - Fermi gases.

nflegtion

- Atoms in optical lattices.
- Quantum computer qubits of atoms or ions.

1995: The Atom Analog of the Laser enables quantum state "manufacture" 2001 For the achievement of Bose-Einstein Condensation

Quantum Timekeepers: A MILLION TIMES BETTER PERFORMANCE

The Optical Lattice Atomic Clocks

- Loses 1 sec accuracy in the age of the universe!
- Ticks at a different rate when lifted by 3 mm because of earth's gravity.

Optical Lattice Clock Technology

3D lattice made by 3 sets of interfering laser beams.

Performance advantage applies to sensors as well.

Holding Atoms Up Against Gravity & Other Forces and other compelling stories

- A pair of oppositely directed laser beams will form an interference pattern.
- Detuned to the red of atomic resonance, atoms will be *trapped* in the high intensity regions, holding them up against gravity.
- Optical Lattices
 - Can make 2-D and 3-D (and more complicated) arrays.
 - Trap and manipulate atoms with 10's to 100's of g's.

Machine Learning for Inertial Sensing using Interferometry

The "expert's" view: Interferometry takes place in 5 steps of 4 types

- 1. Split
- 2. Propagate
- 3. Reflect
- 4. Propagate
- 5. Combine

Quantum Machine Learning to Sense Acceleration

Teaching a lattice to sense acceleration through shaking.

Acceleration measurement: Learning simulation and experiment in good agreement.

Fingerprint: any given acceleration corresponds to a unique signal distribution.

This is a *very* small interferometer. Just a few microns.

flegtion

What Does it Take to Achieve High Performance?

Take the gyro for example:

Machine Learning & Quantum Sensing

- Atoms in an optical lattice are "trained" to carry out atom interferometry.
- Machine learning applied to quantum systems
 - Optimal control
 - Reinforcement learning
- Lattice forces 10's to hundreds of g's
 - Able to operate in a harsh dynamical environment
 - Still take advantage of sensitivity of atoms to external influences.
- Better than strategic grade positioning and navigation performance in a mm-scale sensor device
- Better than 1000x eduction in core sensor volume

Litton aircraft (now Northrop-Grumman) navigation quality "Zeelag" laser gyro, 7 cm(?) per side -related to Dana's PhD work

Honey, I Shrunk the Quantum Matter Machine

Integrated UHV vacuum cell

Packaged Vacuum & Optics

Inflegtion

Laser System

Tomorrow's *miniature* atombased PNT technology will depend on the development of photonic integrated circuits.

Dana Z. Anderson — NDIA Conference — August 28 - 30, 2023 — Washington DC

Today's atomic quantum technology is on its way to fitting in about 5 CD/DVD home players.

Thank You!

