Control of Revolutionary Aircraft with Novel Effectors (CRANE)

Dr. Alexander "Xander" Walan Program Manager, DARPA TTO

NDIA Systems and Mission Engineering Virtual Conference

December 8, 2021

DARPA X-Planes: A Brief History

- Historically, DARPA has developed disruptive air technologies on a consistent cadence
- X-planes are technology demonstrations at convincing scale; they are not prototypes and do not always have X designation
- DARPA X-Planes arise in response to promising technology insights, not requirements pull
- Why do experimental system demonstrations?
 - Rapidly demonstrate high risk/high payoff ideas
 - Prove new enabling technologies that lead to revolutionary system concepts
 - Extend and integrate new research & technologies to achieve significant military advantage

DARPA *CRANE:* Program Vision

Quantify Benefits:

- Improved Survivability
- Enhanced Performance
- Novel Platforms & Geometries

Compelling Capability

Stable of Enabling Tech

<u>Technology:</u>

- Mature & Demonstrated Actuators
- Proven CFD Codes
- ❖ Wind-Tunnel & Subscale Demonstrations

Demonstration Framework

Demonstration Framework:

- Demonstrate Relevant Performance
- Scaling to Relevant Size & Environments
- Clean-Sheet Design / Modification

CRANE: Example of Previous DoD AFC Efforts

- Historically, AFC has been a patch fix for aircraft designs
 - Wake reduction (F-16 ventral fin
- Download reduction (XV-15)
- Supersonic weapons separation (DARPA HIFE
- Aero-optics (DARPA/AFRL tactical laser studies
- DARPA Micro Adaptive Flow Control (MAFC)

Army XV-15 Tiltrotor Download Reduction

"CRANE will design, build, and flight test an X-Plane that incorporates Active Flow Control (AFC) as the primary design consideration."

Active Flow Control (AFC) Defined

"Active flow control (AFC) is the on-demand addition of energy into a boundary layer for maintaining, recovering, or improving vehicle performance" - NASA Definition

- Conventional Types of Flow Control
 - Pneumatic / Fluidic
 - Mechanical
 - Plasma

Different actuation approaches to AFC

- AFC Affects Flows in Numerous Ways
 - Alters the boundary layer of a flow
 - Alters the boundary conditions
 - Introduces / modifies vorticity
 - Increases circulation (Lift)
- AFC Applies to both steady & unsteady flow conditions
 - Small inputs into a flow have large 1st order effects

- [1] Maines, Brant H. et. Al. "Comparison of Flow Control Actuators on a Diamond Wing Planform". Lockheed Martin Corporation, Fort Worth, Texas. 2017.
- [2] www.aerospaceweb.org/question/aerodynamics/q0228.shtml
- $\label{thm:control} [3] www.semanticscholar.org/paper/Turbulent-boundary-layer-control-with-plasma-Choi-Jukes/93562f927c4d150b9f7a9af4df6456efacf54316$
- [4] Yang, et al. "Super-Lift Coefficient of Active Flow Control Airfoil: What is the Limit?" AIAA, Grapevine, Texas. 2017.
- [5] Viktorovich, Bulat "About the Detonation Engine", Saint-Petersburg National Research University of Information Technologies, Saint-Petersburg, Russia, 2014.

AFC: Small inputs to the flow can impart large 1st order effects

DARPA *CRANE:* Program Overview

1) AFC As Primary Design Consideration

- Inject disruption tech into the A/C design process
- Fully explore the AFC trade space
- Address tech challenges associated w/ full scale demo
- Early & frequent risk reduction
- Mature the tools for aircraft configuration & design

2) Affordable Approaches

- Leverage existing technologies / Use COTS where possible
- Avoid developing new non-AFC subsystems
- Systematic airworthiness approach
 - Risk based military flight release for experimental aircraft

3) Demonstration

- Want An Innovative & Novel X-Plane Demonstration
- Fly tactically relevant maneuvers at relevant scale

Weight vs. Speed for Previous AFC Enabled Aircraft

^[1] Warsop, et Al., NATO AVT-239: Flight Demonstration of Fluidic Flight Controls on the MAGMA Subscale Demonstrator Aircraft, AIAA SciTech, 2019

A compelling demonstration of the art of the possible in 21st century aircraft design

^{[2].} Shi, Zhiwei, Zhu, et. Al "Aerodynamic Characteristics and Flight Testing of a UAV without Control Surfaces Based on Circulation Control" ASCE, Nanjing, China, 2019.

^[3] Glezer, et Al., Dynamic Flight Maneuvering Using Virtual Control Surfaces Generated by Trapped Vorticity, AFOSR Final Report, 2010

DARPA *CRANE:* Program Approach

Embedded Gov't SMEs & Engaged Stakeholders

AFOSR

Dedicated HPC Computing Resources & SME Support

Phase 0

- Evaluate multiple candidate configurations and flow control approaches
- Focus on the aircraft design process & trade space -- develop configuration agnostic design guidelines via trade studies
- Conceptual Design Review (CoDR)
- Share results widely via AFC consortium & published research papers

Phase 1

Maturation of concept with component level testing, System Requirement Review (SRR), Preliminary Design Review (PDR)

CRANE: Program Technology Challenges

1) System Design Tools: Expand Aircraft Design Tool Box to Include AFC

- ✓ Need to add AFC to Multi Domain Optimization of Alternatives (MDOA) tools
- Need to add AFC to flight control design tools

2) Full Scale Design & Integration: Design Based on AFC

- ✓ Initial design & configuration centered around AFC S&C
- □ AFC Airworthiness: Robust & Failure Tolerant Design

3) Incorporated AFC into Flight Controls: Basic Aircraft Maneuvers Achieved with AFC

- ✓ CFD / Wind tunnel data needs to be accurately modeled in flight control simulations.
- □ Control loop must account for hysteresis nature of active flow control & cross coupling of effectors & transient effects

DARPA *CRANE:* Incorporate AFC into MDAO Processes

Phase 0 Major Swim Lanes

- 1) Systems Engineering
- Requirements
- Risk management
- Technology dev planning
- Military utility assessments
- 2) Design Methodology
 - MDAO methodology
 - AFC design tools
 - Aerodynamic effects
 - System level impacts
- 3) Configuration & Design
 - Configuration development & refinement
 - AFC based stability & control effectors
- 4) Verification
- Wind tunnel
- Sub-scale flight tests

- Phase 0 Program Management Philosophy:
 - Align Program Management Office (PMO) IPTs w/ performer IPTs
 - Keep SMEs deeply involved in design trades, test planning, & vision concept work
 - Give configurators enough time to be informed by wind-tunnel & CFD results
 - Maximize reuse of existing sub-systems focus risk on those items tied to primary objective

Example: A Novel Approach to Exploring AFC Aircraft

Demonstrate AFC Inclusion into Aircraft Conceptual Design

CRANE: Aurora Flight Sciences – Phase 0 Overview

Broad Empirical Database 10 Wind Tunnel Test Articles University of Arizona & Cal Tech

<u>Database Enriched with CFD</u> >2M CPU-Hrs of Boeing & ERDC HPC Resources >1200 Individual Simulations

AFC Modeling and Conceptual Design Iterations 3 Major AFCIDL Releases >7 Vision Systems Evaluated

CRANE: Lockheed Martin – Phase 0 Overview

Two Fundamental Vehicle Geometries 8 Low Sweep, 5 High Sweep

Response Surface Modeling using CFD >32M CPU-Hrs of LMCO & ERDC HPC

DARPA *CRANE:* GTRC – Phase 0 Overview

CFD Augments Literature Search & WT Testing for AFC
Database
>32M CPU-Hrs of ERDC HPC Utilized

CRANE: BAE - Phase 0 Overview

AFC Conceptual Design

- > Extensive AFC team experience (MAGMA, DEMON)
- > Planform concepts explore high speed applications
- > Transonic wind tunnel testing planned in Phase 0
- > AFC Effectors under test to include:
 - Supercritical Circulation Control
 - Forebody Blowing
 - ❖ High Lift

Planform Classes Currently Under Consideration

CRANE: ERDC Impact to Phase 0

Hardware & Usage

- ~30,000 core dedicated HPC cluster for CRANE performers
- Primarily used for Computational Fluid Dynamics (CFD)
 - Rapid exploration of configuration trade space
 - Detailed trade studies on multiple AFC technologies and implementation strategies
 - Validated to CRANE Phase 0 and prior wind tunnel testing

Expert Knowledge Base

- ERDC Subject Matter Experts (SMEs) facilitated all aspects of HPC resource utilization to realize overall impact to CRANE
- Critical to success of Government provided HPC resource for CRANE Phase 0

Realized Phase 0 Benefits:

- > Increased Computational Capacity
 - ✓ ~66 Million core-hours utilized
 - ✓ 200-500% increase in CFD bandwidth
- ➤ Increase Solution Speed
 - √ 300-1,000% speed increase due to parallelization

- > Cost Avoidance
 - √ >\$4M worth of increased productivity
- ➤ Continued usage in Phase 1+

CRANE: Summary

- CRANE currently executing with both Phase 0 & Phase 1 Performers
- CRANE Tech symposium showed breadth & depth of CRANE data to industry, academia, govt attendees
- Diverse AFC technology applications across Phase 0 and Phase 1 performers
- Finalizing development of AFC data libraries and design tools for delivery to government
- Heavy focus on digital engineering & HPC early in the program to help refine concepts & build the case for which concept shows greatest promise

CRANE To Date: By the Numbers

- ✓ >20 wind tunnel models exploring 2D & 3D applications
- ✓ 6 Different Wind Tunnel Facilities
- ✓ 3 CoDRs
- ✓ > 66M CPU-Hrs on ERDC HPC resources
- ✓ ~9000 individual CFD simulations
- ✓ 4 AFC Enabled Conceptual Design Tools

www.darpa.mil