High Voltage Fireset Component Behavior at Elevated Temperatures

Presented to:
64th Annual NDIA Fuze Conference

Presented by:
Chris Cao

May 12, 2021

Capt. Eric Correll, USN
Commanding Officer

Mr. Ashley G. Johnson, SES
Technical Director

Overview

• Background

• High Voltage Firesets
 – Applications
 – Components

• Technical Survey

• Testing Methodology
 – MIL-STD 331D
 – Things to consider

• Path Forward
Background

• **Technology Goal:** Determine the margin of survivability of existing and mature high voltage fireset technologies at elevated temperatures.

Approach: Survey/consult, obtain/build and test mature fireset designs at temperatures greater than MIL-STD 331D (failure).

Current efforts funded through Joint Fuze Technology Program.
High Voltage Firesets

Other electronics

Control Electronics (Safety Logic)

Environmental/Safety Sensors

High Voltage Electronics and Capacitive Discharge Unit (CDU)

EFI

Primary Focus:

Key Components:
- HV Capacitor
- HV Switch
- HV Converter (Transformer)

- Found in ESADs (non-interrupted or in-line)
- High voltage (>500V)
- Used in Ordnance systems
Typical Applications

• Precision guided munitions
• Air-to-Air Missile (AAM)
• Air-to-Ground Missile (AGM)
• Surface-to-Air Missile (SAM)
• Surface-to-Surface Missile (SSM)
• Light and Heavy Weight Torpedoes

Example of AAM

Non-Interrupted
• “In-line” systems
• Electronic Safe Arm Device (ESAD)
• High voltage system

Electronic based system, no moving parts required
HV Fireset Major Components

• Flyback Transformer
 – HV generation
 • Wire wound
 • Multilayer/Monolithic Ceramic

• High Voltage Storage Capacitor
 – Responsible for energy storage until ready to fire
 • Multi-layer Ceramic (MLCC)
 • Polymer Multi-Layer (PML)

• High Voltage Switch
 – Triggering mechanism that completes circuit upon fire command
Other Key Subsystems

- **Static Switches**
 - Upper/lower
 - Prevents fireset from charging

- **Dynamic Switch**
 - Provides pulse signal for transformer

- **High Voltage Feedback**
 - Maintains high voltage threshold
Technical Survey

- Surveyed/Received HV firesets from across the DoD/DoE agencies
 - Navy
 - Army
 - Air Force

- Key Components Analyzed/Compared
- MIL-STD 331 Requirements
- Temperature regimes
 - Note: Fuzes traditionally located along central may be less affected; however, it is important to understand the margin to which these HV firesets can survive
MIL-STD 331D

• Appendix C
 – Requires a bare, unpackaged fuze and its components to be able to survive temperature extremes up to 160°F or 71°C for 28 days.

• Intend to test to failure

No Standard or Requirement above 160°F or 71°C
Testing Methodology

• Variables to consider, included here but not limited to:
 – Potential cable failures at higher temperatures
 – Soak duration in order to thoroughly evaluate HV fireset performance
 – Isolation of non-key infrastructure
 • Conformal coat/potting
 – Potential redesign for instrumentation
 – Discrete vs. Non-discrete temperature testing
 – Avoid “re-inventing the wheel”
Path Forward

• Continue to develop testing methodology for FY21
 – Temperatures and duration
 – Locations for evaluation (leakage current, etc.)
 – Perform INERT tests in thermal chamber(s)
Questions?