Assessing Cognitive Load for Quantifying Swarming Wave Glider System Usability

Human Systems Conference 2020

Andre Douglas
Section Supervisor/Johns Hopkins University APL
PhD Candidate/George Washington University
Andre.douglas@jhuapl.edu

Melissa Carraway
Senior Professional Staff/Johns Hopkins University APL
Melissa.carraway@jhuapl.edu

Dr. Thomas Mazzuchi
Associate Professor and Department Chair/George Washington University
mazzu@gwu.edu

Dr. Sharham Sarkani
Associate Professor and Director/George Washington University
sarkani@gwu.edu
Agenda/Outline

• Intro: China's drone display
• Need for distributed swarming systems
• Real-time-strategy game StarCraft II
• Problem statement and research question
• Literature review
• Methodology
• Proposed experiment, simulation, equipment
• Wave glider operations and why this matters
• Conclusion
• Questions
China World Record Display of 1374 Drones
The Need for Distributed Systems

• Distributed unmanned systems have the potential to:
 - Reduce cost related to human operators
 ▪ Safety systems
 ▪ Life support systems
 - Increase flexibility, functionality, and reliability
 - Reduce threats to remote operators
 - Assist mankind in exploration beyond our limits

• Swarming intelligence is a promising approach for unmanned systems that can support various missions such as:
 - Intelligence, surveillance, and reconnaissance (ISR)
 - Space exploration
 - Search and rescue operations
 - Port security
The Need for Distributed Systems

- Larger vehicles
- More extreme environments
- Ghost fleets
- Numerous heterogeneous agents
Where does the human fit and why?

• Most swarms utilized by the military will not require a human operator on board to reduce risk and improve safety

• Legal implications restrict autonomous unmanned systems from running fully autonomous

• Humans likely to participate in a remote supervisory capacity enabling them to take responsibility for critical decisions

• What might this look like?
StarCraft II: Real Time Strategy Game

• RTS games are already widely exercised today
• Players exhibit supervisory command and control to numerous units within an environment
• Requires complex strategy and situational awareness skills across multiple domains
StarCraft II Real Time Strategy Game

• Game enables ability to utilize heterogeneous or homogenous swarms to defeat enemies

• Players must balance task allocation efforts to win
StarCraft II Real Time Strategy Game

- Tasks include:
 - Managing economic resources
 - Building
 - Basic units
 - Advance units
 - Tech upgrades
 - Collecting intelligence
 - Surveys

- Multiple players at once
- Three factions to choose from
- Various strategies for implementation
- AI players trained to beat humans: AlphaStar DeepMind
While we have seen decades of research into swarming algorithm development, the community has lacked a thorough investigation of man-unmanned teaming system design performance.

Research questions:
- Which cognitive load metric is most accurate and meaningful?
- How do we design a system such that its user maximizes performance?
- How do we quantify task difficulty and understand how to compensate with automation?
- How does cognitive load limits compare when experiencing different:
 - Swarm sizes
 - Task complexities
 - System disturbances
 - Cyber
 - Faults and failures
 - Environment
- What is the right level of automation within teaming?
Literature Review on Cognitive Load

• Studies on measuring cognitive load have been done in the past to help us understand interactions between systems and tasking using various means:
 - Khawaja 2013 – Conducted a study to use non-invasive means (linguistics) to help measure cognitive load
 ▪ Fire management studies using table top exercises
 ▪ Team environment based on completing tasks
 ▪ Audio recordings and surveys used to assess cognitive load
 - Evans 2016 – Conducted a study to use eye tracking metrics to assess cognitive load
 ▪ Used real time strategy game for assessing players: Arcanium
 ▪ Varied levels of autonomy in player’s units to elicit varying performance
 ▪ Measured eye fixation rate, run-time, and surveys to assess cognitive load
 - Zhang 2018 – Conducted a study to use pulse rate variability metrics to assess cognitive load
 ▪ Used computer game to assess players performance: Plants vs. Zombies
 ▪ Varied level of difficulty to understand cognitive load response
 ▪ Used Photoplethysmogram (PPG) to measure and quantify cognitive load
Methodology

- **sVRI (Stressed Induced Vascular Response Index):**
 - Measures the average amplitude for A1 and A2, then computes ratio

- **Algorithm Framework (Bottom Up):**
 - **Statistical Index moderating:**
 - Assesses the normality of the data
 - **Dynamic Sliding Window**
 - Enlarges the data range for smoothing out calculated index
 - **Featured Pattern Extraction**
 - Appropriately identifies features for algorithm processing
Methodology

• Choose simulation or exercise for participants to use for assessing cognitive load using swarms:
 - Agent based simulation of Wave Glider system
 - StarCraft II environment
 - Other simplified RTS game

• Assess Cognitive load using non invasive measures:
 - PPG with appropriate indexes (primary indicator)
 - Eye tracking
 - Surveys NASA task loading index

• Data analysis
 - ANOVA

• Determine which parts of the system design and interaction result in near the “red line” of cognitive limits
Experiment Proposal

- Test subjects
 - Age range
 - Experience level
 - Normalize rest state

- Behavior Executions within Missions
 - Localization
 - Payload execution
 - Navigation through environment
 - Fault injection
 - Objective change in missions

- Test environment
 - Constant conditions
 - Similar timeframe
 - Minimal disturbances
Experiment Goal

- Understand what supervisory control and decision making require the most cognitive load
- Understand what tasks and durations cause human complacency in a supervisory control man-unmanned teaming situation
- Determine which displays impact cognitive load during supervisory control
- Use results to help design autonomy to be adjustable based on cognitive load levels
- Identify overload points in supervisory control
- Understand how usable this system is
Wave Glider System

- Unmanned Surface Vehicles used to remotely monitor maritime environments
- Piloted by operators around the world using Iridium
Conclusions

• Experimentation and results can be used to influence design of swarming unmanned system interfaces
• There is a growing need for this type of integration as the demand for larger swarming systems evolve with increasing capability and size
• Metrics can be defined to help with this process, then used to develop a full model for understanding the feedback loop for adjusting system level autonomy for teaming
• Measuring cognitive load in real time can also give feedback to designers that users cannot always do verbally
References:

- 2018 International Panel on the Regulation of Autonomous Weapons (iPRAW) concluding report.
References: Images

- https://starcraft.fandom.com/wiki/Korhal_City_(map)?file=KorhalCity_SC2-HotS_Art1.jpg
- https://www.ldatschool.ca/working-memory-and-cognitive-load/
- https://medium.com/design-signals/cognitive-psychology-in-ux-minimising-the-cognitive-load-d97ad8e3115b
- https://www.dailymail.co.uk/sciencetech/article-7577107/SpaceX-files-30-000-Starlink-satellites-approved-12-000.html
References: Images

- http://mavlab.tudelft.nl/how-the-google-sorting-algorithm-helps-us-develop-swarms-of-drones/
- https://verhaert.com/ai-technology-to-measure-absolute-blood-pressure/
- https://www.liquid-robotics.com/wave-glider/software/
- https://www.seti.org/research/Planetary-Exploration
- https://defensesystems.com/articles/2017/05/08/marinecorpprint.aspx
Questions