Engineered Resilient Systems LOE (FY16-FY25)

- **ERS Mission**
 - Transform Acquisition Engineering
 - Move engineering rigor to the left
 - Reduce risk through improved simulation
 - Instantiate digital engineering process
 - Increase M&S productivity by 10,000x
 - Tri-Service and Industry Collaboration
 - Facilitate impactful demonstrations
 - Share lessons learned

- **Products Delivered**
 - Computational models and process tools (Galaxy)
 - Conceptual design tools (air, land, sea)
 - High performance data analytic infrastructure
 - Decision dashboards & visualization tools
 - Models for mission effectiveness

- **Lessons Learned**
 - Advanced computing (models, data, and analyses) is required for rigorous systems analysis
 - Computational environments that easily adapt to unique processes, models and tools for each acquisition domain is a must
 - Government/industry collaboration is crucial for success

Late discovery of design or requirements changes drive up cost and extend schedules.
ERS Capabilities

Computational Processes
- Speed and Accuracy

Computational Environments
- Shared Tools & Data

Decision Analytics
- Deep Insights

Set-Based Design
- Risk Reduction & Resilience

Decision Dashboards
- Decide Faster

Conceptual Design GUI

Rotorcraft Sensitivity Studies
Computational Processes

Speed and Accuracy

- **Key Projects**
 - AFRL / Lockheed Hypersonics
 - AFRL Directed Energy
 - Army Future Vertical Lift

- **Required Capabilities**
 - Fast and accurate models – six months to six days to six seconds
 - Model accessibility – production grade
 - Multi-physics, tightly or loosely coupled
 - Temporal and spatial domain scalability – 7 orders magnitude
 - Portability to multiple computing environments
 - Ubiquitous usage

- **Challenges**
 - Solution times
 - Surrogate model training data requirements
 - End-to-end, fully coupled, model execution

S-76 rotor

AIAA Hover Prediction Workshop 2015
Computational Environments

Shared Tools & Data

- **Key Projects**
 - Hypersonics – AFRL / Lockheed Computational Environment
 - AI/ML – JAIC PMx NMI, JAIC JCF
 - Future Vertical Lift

- **Required Capabilities**
 - Common AI/ML development software
 - Common access to data / models by all partners
 - Must leverage DOD HPCMP and Cloud (JEDI when ready)
 - Portability to future computing platforms

- **Challenges**
 - Continuous funding
 - Computational environments are still in development
 - Cultural acceptance
 - Gov/OEM should utilize same tools
Decision Analytics

Deep Insights

- **Key Projects**
 - Predictive maintenance: (PMx) NMI, UH-60 Black Hawk
 - Cyber analytics
 - Automated labeling of data

- **Required Capabilities**
 - Co-location of data and analytic tools
 - Advanced data wrangling
 - Automated tuning of AI/ML algorithms
 - Computing learning at the edge
 - Physics-informed machine learning

- **Challenges**
 - Tera-, peta-, exabyte data lakes
 - Mixed classification of data
 - Dirty data
Set-Based Design

Risk Reduction & Resilience

• Key Projects (25+ current projects)
 – High-powered microwave effectiveness models (AFSIM)
 – Space-based power, IADS, and LEO satellite studies in AFSIM
 – DARPA HAVOC, DARPA INVEST programs
 – High-energy laser parameter tuning in AFSIM
 – Army Future Vertical Lift conceptual design and assessment
 – Hall Effect thruster parameter tuning

• Required Capabilities
 – Scalability – must execute and analyze 10^N simulations
 – Must include legacy tools
 – Machine-driven design
 – Multi-fidelity model coupling

• Challenges
 – Properly sized sets for accurate tradespace exploration
 – Cost modeling
 – Accurate physics
Decision Dashboards

Key Projects
- Trades on ships, AV, missions
- Logbook data (helicopters)
- Environmental factors

Required Capabilities
- Ease of use
- Faster execution
- Portability
- Adaptability

Challenges
- Portability to environments (classification)
- Disconnected workflows
- Spotty network connectivity
- Unique stakeholder processes
- Mission engineering integration
ERS Partners and Collaborators

Government
- Air Force Research Lab (AFRL)
- Joint AI Center (JAIC)
- Army Research Laboratory (ARL)
- Combat Capabilities Development Command (CCDC)
- Engineer Research and Development Center (ERDC)
- AF Life Cycle Management Center (AFLCMC)
- Arnold Engineering Development Center (AEDC)
- Naval Research Laboratory (NRL)
- Naval Undersea Warfare Center (NUWC)
- Naval Sea Systems Command (NAVSEA)

Industry, & Academia
- Carnegie Mellon University
- Stevens
- Texas
- Georgia Tech
- Pennsylvania State University
- Massachusetts Institute of Technology
- West Point
- NPS

Coalition Partners
- BAE Systems
- Raytheon
- Northrop Grumman
- Dassault Systemes
- Boeing
- Anaconda
- Kitware
- Aqua VEO

ERS Overview - October 2019 - page 9

Distribution Statement A – Approved for public release by DOPSR. Distribution is unlimited.
Summary

• The ERS program addresses specific needs as outlined within the 2018 National Defense Strategy.

• ERS is focused on critical OSD priorities (e.g. AI/ML, Hypersonics, Directed Energy).

• Industry interactions are critical in support of priority DoD projects.

• ERS capabilities are adaptable to support the DoD mission engineering process using computational environments, mission modeling software, and advanced visualization.

• ERS ensures ability of services, industry, and coalition partners to fully implement digital engineering strategy.