A Graph and Model-Based Analysis of the Openness of Functional Reference Architectures for Modular Open Systems

NDIA 22nd Annual Systems & Mission Engineering Conference
October 23, 2019

Jean Charles Domercant, Ph.D.
Erika Brimhall
Daniel Cooksey, Ph.D.

Georgia Tech Research Institute
Overview

• Background & Motivation
 • Increasing System Cost & Complexity
 • Modular Open Systems Architectures
 • Defining Severable Modules

• Functional Reference Architectures
 • Joint Common Architecture
 • Functional Architecture for STrategic Reuse – FASTR

• How to Measure the Openness of a Functional Reference Architecture
 • Metrics
 • Tool Development
“In the year 2054, the entire defense budget will purchase just one aircraft.

This aircraft will have to be shared by the Air Force and Navy 3-1/2 days each per week except for leap year, when it will be made available to the Marines for the extra day.”

Norman R Augustine, Former Chairman/CEO, Lockheed Martin - 1984
Open vs. Closed Systems

- Modular Open Systems Approach (MOSA)
- Both a business and technical strategy
 - Defines key interfaces
 - Uses consensus-based standards
- MOSA is not necessarily an “all or nothing approach” and the degree of openness can vary based on the modularity of the design.
Implementing MOSA Using a Common Architecture

Example of a Common Architecture

Reference Architecture (RA)
- Technical Context
 - Functional Reference Architecture (e.g., FAST results, etc.)
- Data Models and Frameworks
 - Data Architecture Framework
- Business Context (e.g., Data Rights/Reusability, Community/Interaction, Strategy)
- Stakeholder Context (Operational Model for included missions)
- Processes (e.g., Fast, ADCM, etc.)
- Standards (e.g., MIL-STD, S760B, etc.)
- Tools (e.g., AVK, ESKD, Rhapsody, SATE, etc.)

Objective Architecture
- Baseline or Core Capability
 - Technical Context
 - Requirements/Specification
 - Representing desired TTPs, data models, and other constraints performing in selected processes, standards, and tools.
 - Functional Architecture
 - Representing solutions from FRAs and all desired CDD capabilities
 - Logical Architecture
 - Representing allocations based on reuse and procurement strategy.
 - Physical Architecture
 - Representing allocation of PL to Logical
 - Business Context
 - Common to all FoS platforms/missions covered by the desired CDD/Reqs (PDR level of detail)
 - Stakeholder Context (Operational Model for included missions)
 - Common applied as baseline to extend all FoS platforms/missions covered by the desired CDD/Reqs (PDR level of detail)

System Architecture (SA)
- Derived/Refined/Extended from and traceable to the OA
 - Technical Context
 - Requirements/Specification
 - Representing system and desired requirements and constraints that must be satisfied by the specific set of system capabilities
 - Functional Architecture
 - Representing the functional description of the specific set of system capabilities
 - Logical Architecture
 - Representing the allocation of this specific set of system capabilities to logical components
 - Physical Architecture
 - Representing physical description of all this specific set of system capabilities

Feedback Mechanism

Joint Multi-Role Technology Demonstrator (JMR TD) Mission Systems Architecture Demonstration (MSAD) Capstone Demonstration Overarching Broad Agency Agreement (BAA), 2018
Functional Reference Architecture (FRA)

- Intended to be used as a template
 - Objective Architectures: Aid in defining functionality for a family of systems
 - System Architectures: Specific to a single platform and its allocated missions
- Provides consistent, full coverage of the system functionality
 - System and implementation agnostic
 - Result is generic and reusable functions
 - Forms the basis for severable modules

Example Navigate Functional Activity
Example FRA

- Joint Common Architecture (US Army Research, Development, and Engineering Command)
 - Intended to define Reusable Software Components that reside on the mission computers of the Future Vertical Lift (FVL) fleet
 - Government-owned, implementation, and technology-independent conceptual framework
 - Provides a conceptual description of a set of generic avionics subsystems
 - Also provides a functionally decomposed mission computing subsystem comprising a functional model and a semantic data model

Example Future Vertical Lift Concepts

Functional Architecture for STrategic Reuse – FASTR

- FASTR is a systematic approach for developing implementation-agnostic functional decompositions
- Approach works even in the absence of formal requirements
- Includes Model Based Systems Engineering decomposition and recomposition processes and tools
- Supports the creation of a FRA and severable modules to support MOSA

Defining Severable Modules

Steps to Defining Severable Modules:
1. Decompose Mission Threads to lower-level tasks and functions
2. Identify common tasks/functions

“Operate Comms. Equipment” appears in both mission threads
Defining Severable Modules

Steps to Defining Severable Modules:

1. Decompose Mission Threads to lower-level tasks and functions
2. Identify common tasks/functions
3. Define a portable Software/Hardware Product
 - Meets the data requirements
 - Can be reused for different platforms instead of re-implemented

<<MissionTask>>
fastrUID = 311
Operate Communication Equipment
Severable Modules Enable Functional Reuse

Functional Decomposition
Result of this process: develop a common function library that is system and implementation agnostic

Functional Reuse
Integration of functions into systems to meet design requirements
Measuring the Openness of a FRA

• The “Openness” of a FRA must be assessed

• 1) How well does the FRA supports the development of severable modules?
 • Quantitatively assess the level of modularity that can be achieved using the resulting functional decomposition

• 2) What is the quality of the FRA in terms of the following?
 • Consistency and completeness of the function definitions and data elements
 • Are the functions specified to the correct level of abstraction?
 • Etc.

• A FRA was developed using FASTR for Aviate, Navigate, Communicate (ANC) aircraft functions – FASTR ANC FRA

A FRA is an integral part of implementing MOSA, thus, it is crucial to develop metrics to assess how well the FRA supports an open approach.
1) Modularization Scoring

\[\text{Score} = \sum_{m=1}^{M} \frac{E_{\text{int}} - \beta E_{\text{ext}}}{n(n-1)} \]

Genetic Algorithm-derived modularization scheme with low cost penalty for external module-to-module connections

Genetic Algorithm-derived modularization scheme with high cost penalty for external module-to-module connections
2) Function Inputs/Outputs

<table>
<thead>
<tr>
<th>Metrics to Minimize</th>
<th>Description</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions without Inputs</td>
<td>Functions that do not have any inputs.</td>
<td>If there's no input, the function is generating something from nothing.</td>
</tr>
<tr>
<td>Functions without Outputs</td>
<td>Functions that do not have any outputs.</td>
<td>If there's no output, there's no need for the function.</td>
</tr>
<tr>
<td>Functions without Inputs or Outputs</td>
<td>Functions that have neither inputs nor outputs.</td>
<td>If there's no input, the function is generating something from nothing. If there's no output, there's no need for the function.</td>
</tr>
<tr>
<td>Functions with Inputs that Match Outputs</td>
<td>Functions with either no I/O at least one input that matches at least one output.</td>
<td>Functions transform inputs into outputs. If there's no transformation, there's no need for the function.</td>
</tr>
<tr>
<td>Functions without Modeled Inputs or Outputs</td>
<td>Functions with either no I/O or I/O as text or graphically depicted but no modeled relationship between the functions and the data. Note that this is NOT the same as functions that use data elements not data modeled.</td>
<td>If the inputs or outputs aren't modeled, there's no point of modeling the function.</td>
</tr>
</tbody>
</table>
2) Function Names

Metrics to Minimize

Functions Not Named
- **Description**: Functions with a blank name or a meaningless placeholder name.
- **Justification**: Function names help humans and analysis software understand the main intent of a function.

Functions Names Not Beginning with Verb
- **Description**: Functions with names that do not begin with a verb.
- **Justification**: Functions transform inputs into outputs by doing something; a verb helps capture what the function is doing to accomplish that.

Functions Names Not Containing an Object
- **Description**: Functions with names that do not contain an object.
- **Justification**: If it’s unclear what the verb is acting upon, the name is insufficient for communicating what a function does.
2) Function Documentation

Metrics to Minimize

Functions Not Documented

Description: Functions without descriptions.
Justification: Functions without descriptions are missing an important way to convey their functionality to humans and analysis software.
2) Non-connected Functions

Description: Functions that do not connect to any other functions via data flow (i.e., the inputs and the outputs are not used by other functions)

Justification: Modular functions are intended to connect to each other to serve a purpose. Functions that cannot connect to others are limited in their usefulness.

Metrics to Minimize

- **Non-connected Functions**
 - Description: Functions that do not connect to any other functions via data flow (i.e., the inputs and the outputs are not used by other functions)
 - Justification: Modular functions are intended to connect to each other to serve a purpose. Functions that cannot connect to others are limited in their usefulness.
2) Distinct Function Networks

Metrics to Minimize

Distinct Networks of Atomic Functions

- **Description:** Number of separate networks formed by input/output connections between atomic functions.
- **Justification:** If there's no behavior path that can connect specific functions, there could be a gap in functionality.
2) Data Elements Not Documented

Metrics to Minimize

Data Elements Not Documented
Description: Data elements that do not have descriptions.
Justification: Descriptions are important for communicating the purpose/content of a data element.

Functions that Use Data Elements Not Documented
Description: Functions that use the data elements that do not have descriptions.
Justification: Descriptions are important for communicating the purpose/content of a data element.
2) Data Elements Not Data Modeled

Description: Data elements that are not data modeled using some formal language.

Justification: Formal data modeling reduces ambiguity of interpretation and allows automated analysis.

Functions that Use Data Elements Not Data Modeled

Description: Functions that use data elements that are not data modeled using some formal language.

Justification: Formal data modeling reduces ambiguity of interpretation and allows automated analysis.

Metrics to Minimize

Data Elements Not Modeled

Description: Data elements that are not data modeled using some formal language.

Justification: Formal data modeling reduces ambiguity of interpretation and allows automated analysis.
2) Over-specified Data

Metrics to Minimize

Data Elements Beyond Conceptual Level (Over-specified)
Description: Data elements that use non-conceptual concepts such as a frame of reference or units.
Justification: Over-specifying data elements makes them less portable/modular.

Functions that Use Data Elements Beyond Conceptual Level (Over-specified)
Description: Functions that use data elements that are non-conceptual.
Justification: Over-specifying data elements makes their associated functions less portable/modular.
Metrics for FASTR ANC FRA

<table>
<thead>
<tr>
<th>Metric</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Functions</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Functions without Inputs</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Functions without Outputs</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Functions without Inputs or Outputs</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Functions with Inputs that Match Outputs</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Functions without Modeled Inputs or Outputs</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Nonconnected Functions</td>
<td>16</td>
<td>16%</td>
</tr>
<tr>
<td>Functions Not Documented</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Functions Not Named</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Functions Names Not Beginning with Verb</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Functions Names Not Containing an Object</td>
<td>3</td>
<td>3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Atomic Functions</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Atomic Functions without Inputs</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atomic Functions without Outputs</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atomic Functions without Inputs or Outputs</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Functions with Inputs that Match Outputs</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atomic Functions without Modeled Inputs or Outputs</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atomic Nonconnected Functions</td>
<td>14</td>
<td>20%</td>
</tr>
<tr>
<td>Atomic Functions Not Documented</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Functions Not Named</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atomic Functions Names Not Beginning with Verb</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atomic Functions Names Not Containing an Object</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Distinct Function Graphs of Atomic Behavior</td>
<td>9</td>
<td>13%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Data Elements</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Data Elements Not Documented</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Functions that Use Data Elements Not Documented</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Atomic Functions that Use Data Elements Not Documented</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Data Elements Not Modeled</td>
<td>14</td>
<td>11%</td>
</tr>
<tr>
<td>Functions that Use Data Elements Not Data Modeled</td>
<td>31</td>
<td>31%</td>
</tr>
<tr>
<td>Atomic Functions that Use Data Elements Not Data Modeled</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Data Elements Beyond Conceptual Level (Overspecified)</td>
<td>13</td>
<td>19%</td>
</tr>
<tr>
<td>Atomic Functions that Use Data Elements Beyond Conceptual Level (Overspecified)</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>
Tool Development

- FRAs can include hundreds of functions and data elements
- ARC tool developed to aid in the analysis of FRAs – Graph Based Analysis Approach
- Thorough analysis of FRA Openness can transform FRAs from templates to true analytical tools.

Distinct Networks of Atomic Functions

Comparing the Connectedness of Different FRAs
Summary

- System complexity and cost continues to increase at a rapid pace to meet desired capability needs
- A Modular Open Systems Approach (MOSA) is necessary to combat this negative trend
- The degree of Openness can vary based on the modularity of the design, and Functional Reference Architectures form the basis for severable modules
- Two approaches and corresponding metrics presented to assess how well a FRA supports Openness
Thank You!