

Towards a Multi-Agent/Multi-Domain World Model

Gautam Vallabha (gautam.vallabha@jhuapl.edu) Mark Hinton Christine Piatko

April 25, 2019

DISTRIBUTION STATEMENT A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Outline

- Our Goal
- Scenario Multi-Agent/Multi-Domain Squad
- Multi-Agent World Model
 - Definition
 - Requirements
- Our Approach
 - Multi-Agent World Model Demo
 - Standards

Our Goal

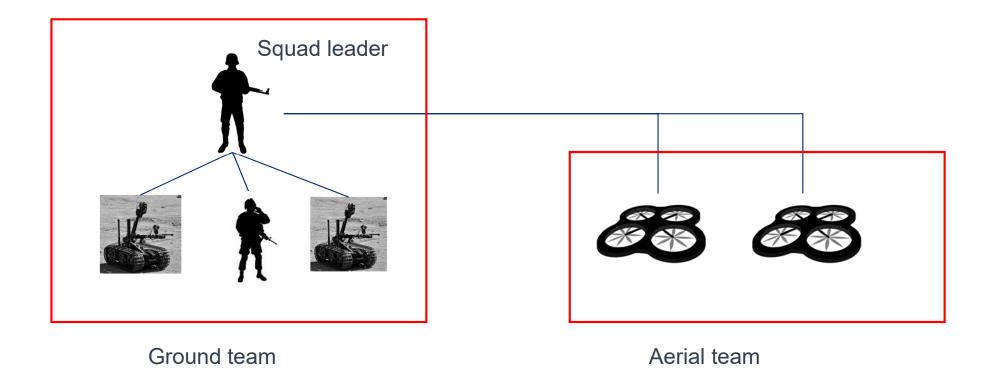
Previous work on World Modeling focuses on information integration on a single agent

Single-Agent World Model

- Repository for storing, providing and sharing information relevant to a system's operational environment and beliefs
- Processed sense data
- Environmental beliefs derived from sense data
 - Object identification and classification, including threat identification, etc.
- History of behavioral decisions made as a result of sense data and derived beliefs
 - Path modification for obstacle avoidance, etc.

Our Goal

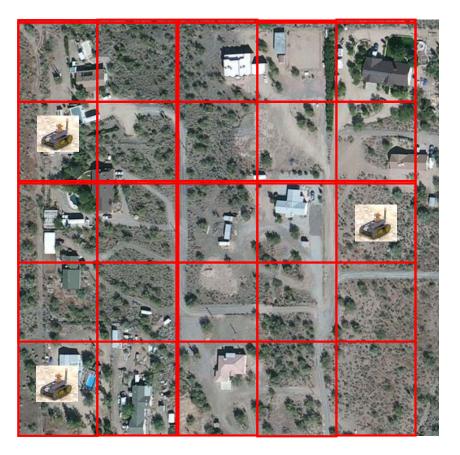
Previous work on World Modeling focuses on information integration on a single agent


What does "World Model" mean for a Multi-Agent/Multi-Domain system?

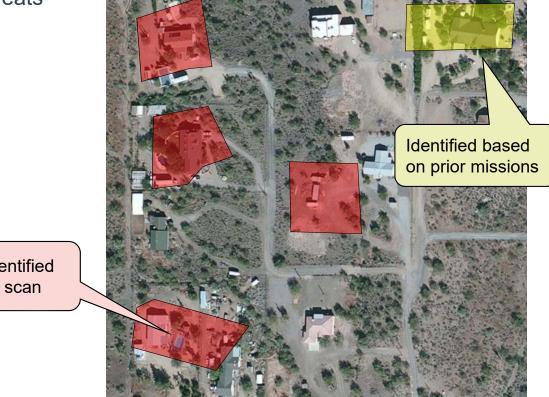
DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Scenario – Multi-Agent/Multi-Domain Squad

APL


DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

- Mission: Area reconnaissance for IED threats
- Multi-Domain team needs to
 - Do aerial scan of geographic area
 - Identify suspicious areas
 - In-depth reconnaissance with ground team
 - Identify possible threats



- Mission: Area reconnaissance for IED threats
- Multi-Domain team needs to
 - Do aerial scan of geographic area
 - identify suspicious areas
 - In-depth reconnaissance with ground team
 - Identify possible threats

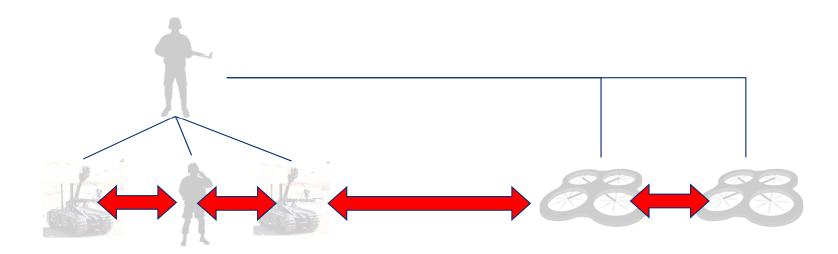
- Mission: Area reconnaissance for IED threats
- Multi-Domain team needs to
 - Do aerial scan of geographic area
 - Identify suspicious areas
 - In-depth reconnaissance with ground team
 - Identify possible threats

Areas identified by aerial scan

APL,

- Mission: Area reconnaissance for IED threats
- Multi-Domain team needs to
 - Do aerial scan of geographic area
 - Identify suspicious areas
 - In-depth reconnaissance with ground team
 - Identify possible threats

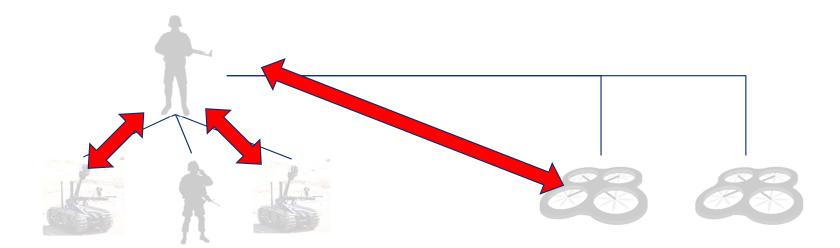
https://news.usni.org/2015/08/27/advanced-eod-robotic-system-variant-approved-for-emd-phase


APL,

- Mission: Area reconnaissance for IED threats
- Multi-Domain team needs to
 - Do aerial scan of geographic area
 - Identify suspicious areas
 - In-depth reconnaissance with ground team
 - Identify possible threats

 $https://upload.wikimedia.org/wikipedia/commons/a/a5/IED_Baghdad_from_munitions.jpg$

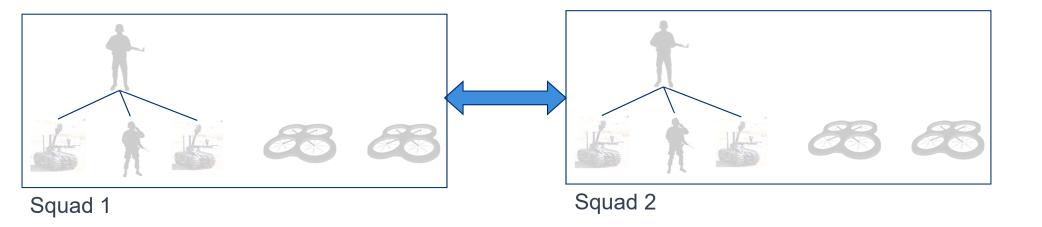
Horizontal sharing of information within a squad



DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

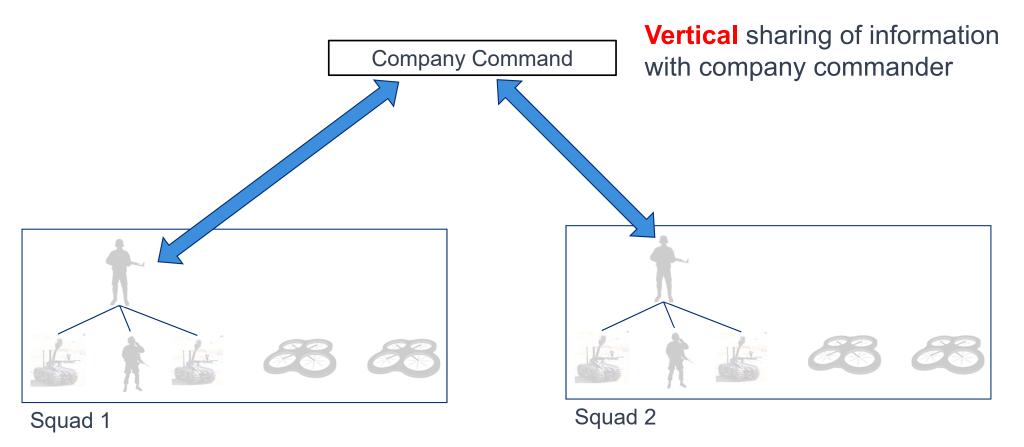
3 May 2019 | 11

Vertical sharing of information with squad leader

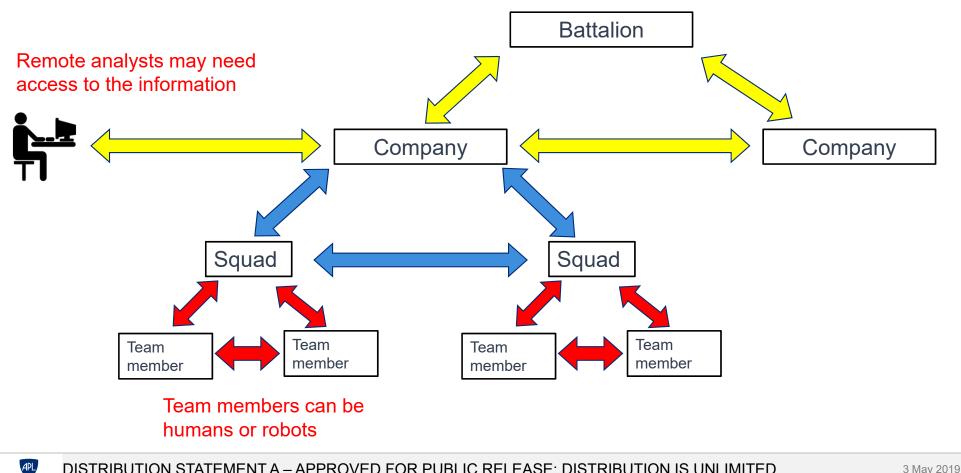


DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

3 May 2019 | 12


Company Command

Horizontal sharing of information between squads



DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DISTRIBUTION STATEMENT A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Multi-Agent/Multi-Domain World Model

Facilitates

Common Operating Picture Situational Awareness across System of systems Command and control

Enables

Semantic data interchange among heterogeneous robot and human teams

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Shared

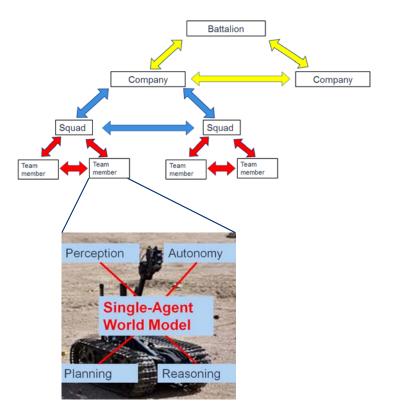
- Within and across systems
- Vertical and horizontal
- Timely and relevant (right information, right place, right time)

Scalable

- Across many heterogeneous agents
- With differing capacities (network, compute, storage)

• Extensible

- New kinds of missions and tasking
- New kinds of domains (e.g., amphibious robots)


Interoperable

- Interoperability of data across lifetime of systems
- Across multiple vendors

Resilient

APL,

- Unreliable networks and topologies
- Node failures
- Unexpected tasking (on-the-fly teaming)

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Shared

- Within and across systems
- Vertical and horizontal
- Timely and relevant (right information, right place, right time)

Scalable

- Across many heterogeneous agents
- With differing capacities (network, compute, storage)

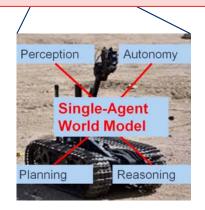
• Extensible

- New kinds of missions and tasking
- New kinds of domains (e.g., amphibious robots)

Interoperable

- Interoperability of data across lifetime of systems
- Across multiple vendors

Resilient


APL,

- Unreliable networks and topologies
- Node failures
- Unexpected tasking (on-the-fly teaming)

World representation is meaningful across:

- Heterogeneous robots
- Human operators
- Aggregated data repositories
- Reasoning engines

Focus on **semantic data** rather than raw sensor data & specific algorithms

DISTRIBUTION STATEMENT A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Shared

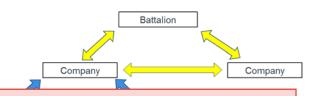
- Within and across systems
- Vertical and horizontal
- Timely and relevant (right information, right place, right time)

Scalable

- Across many heterogeneous agents
- With differing capacities (network, compute, storage)

• Extensible

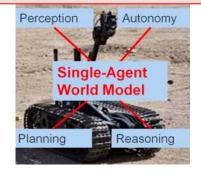
- New kinds of missions and tasking
- New kinds of domains (e.g., amphibious robots)


Interoperable

- Interoperability of data across lifetime of systems
- Across multiple vendors

Resilient

APL,


- Unreliable networks and topologies
- Node failures
- Unexpected tasking (on-the-fly teaming)

Data is available

- Across system topologies
- Across node capabilities

Efficient use of network bandwidth

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Shared

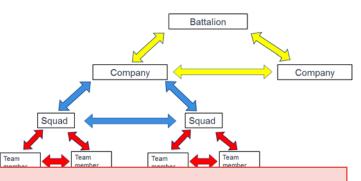
- Within and across systems
- Vertical and horizontal
- Timely and relevant (right information, right place, right time)

Scalable

- Across many heterogeneous agents
- With differing capacities (network, compute, storage)

• Extensible

- New kinds of missions and tasking
- New kinds of domains (e.g., amphibious robots)


Interoperable

- Interoperability of data across lifetime of systems
- Across multiple vendors

Resilient

APL,

- Unreliable networks and topologies
- Node failures
- Unexpected tasking (on-the-fly teaming)

Data definitions are **dynamic** (add new types of data on the fly, e.g., vehicles, weapons)

Data is self-describing

Facilitate aggregation across composite sources, querying

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Shared

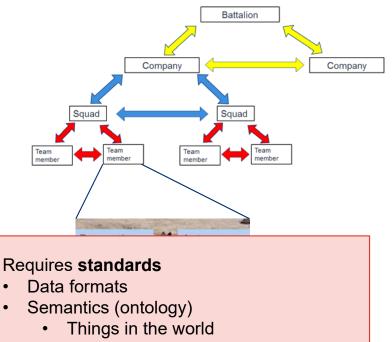
- Within and across systems
- Vertical and horizontal
- Timely and relevant (right information, right place, right time)

Scalable

- Across many heterogeneous agents
- With differing capacities (network, compute, storage)

• Extensible

- New kinds of missions and tasking
- New kinds of domains (e.g., amphibious robots)


Interoperable

- Interoperability of data across lifetime of systems
- Across multiple vendors

Resilient

APL,

- Unreliable networks and topologies
- Node failures
- Unexpected tasking (on-the-fly teaming)

- Relationships between them
- Types of missions

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Shared

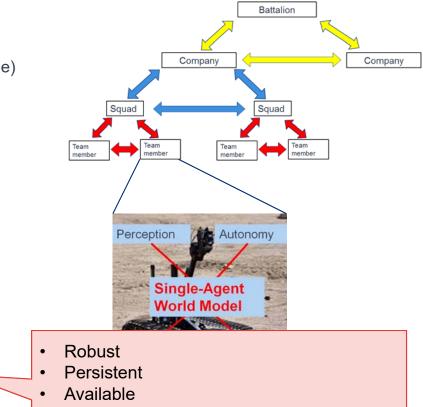
- Within and across systems
- Vertical and horizontal
- Timely and relevant (right information, right place, right time)

Scalable

- Across many heterogeneous agents
- With differing capacities (network, compute, storage)

• Extensible

- New kinds of missions and tasking
- New kinds of domains (e.g., amphibious robots)


Interoperable

- Interoperability of data across lifetime of systems
- Across multiple vendors

Resilient

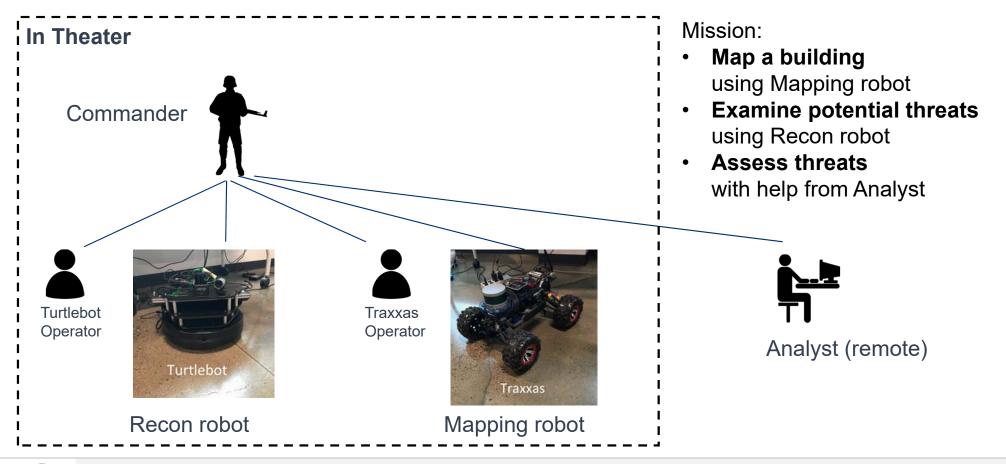
APL,

- Unreliable networks and topologies
- Node failures
- Unexpected tasking (on-the-fly teaming)

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

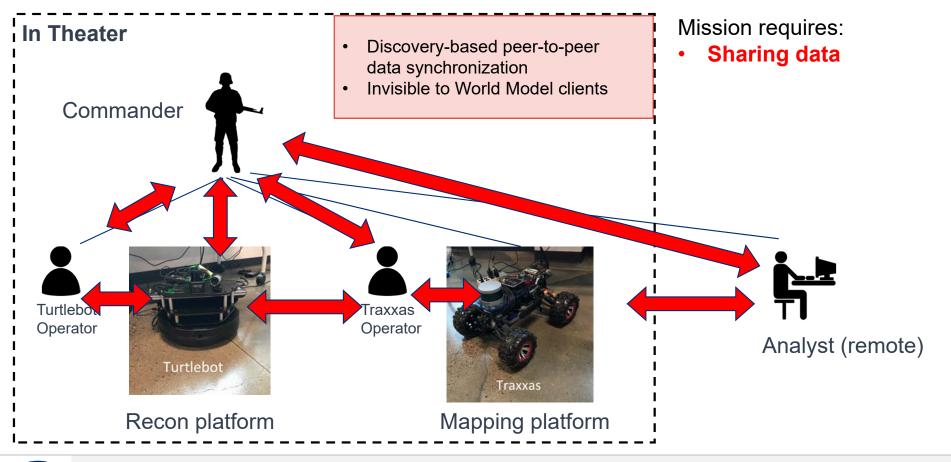
Outline

- Our Goal
- Scenario Multi-Agent/Multi-Domain Squad
- Multi-Agent World Model
 - Definition
 - Requirements
- Our Approach
 - Multi-Agent World Model Demo
 - Standards



Multi-Agent World Model Demo - Motivation

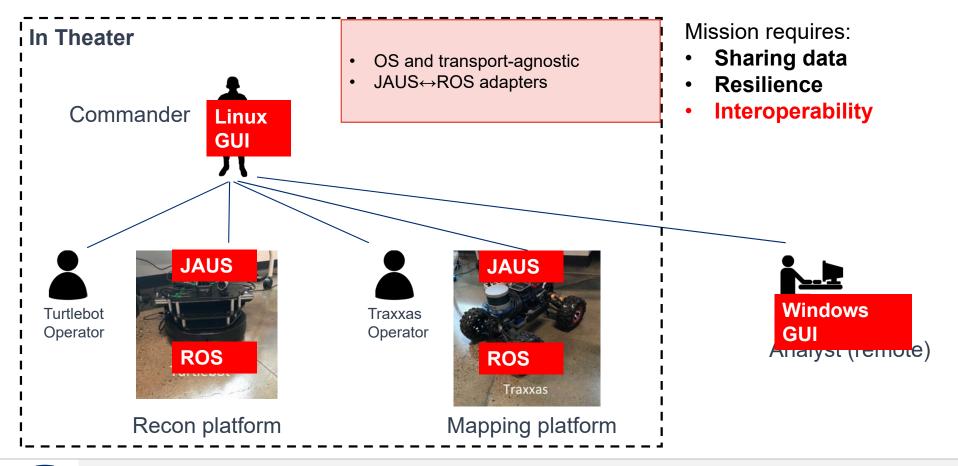
- Work through a scenario
- Motivate design for standard
- Proof of concept
 - Viability of approach (key part of a world model is need to accommodate legacy systems)



DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DISTRIBUTION STATEMENT A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

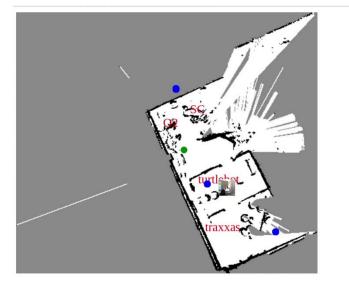
APL,


DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

APL,

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

APL,



DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

APL

- Recon robot uses map generated by Mapping robot
- Recon robot visits POI designated by commander, takes snapshots

- Commander asks remote analyst for assessment
- 4 Analyst gives response

14:43:06 14:42:50 14:43:00

My Location: 1.3

Multi-Agent World Model Demo – Lessons Learned

- Viability of standards-compliant facade
 - Integrated existing ROS-based system into a system of systems through a standards-compliant (JAUS) layer
 - Backwards compatibility with legacy systems
- Value of open interface
 - Ability to run on multiple systems (Win, Linux),
 - Support for using multiple transports (DDS, ROS, JAUS)
- Importance of testing with physical networking configuration
 - Exercised data distribution and scaling in face of realistic delays and network congestion

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Outline

- Our Goal
- Scenario Multi-Agent/Multi-Domain Squad
- Multi-Agent World Model
 - Definition
 - Requirements
- Our Approach
 - Multi-Agent World Model Demo
 - Standards

Standards Activity - Previous

- Joint Architecture for Unmanned Systems (JAUS)
 - Reference Architecture 3.3 (2007)
 - World Model Vector Knowledge Store
 - Geometric focus rather than flexible metadata
 - Limited cross-platform data-sharing mechanism
 - Environment and World Model Task Group (2013)
 - Effort discontinued
- RCTA Common World Model (2013)
 - Focus on data sharing within a platform, not between platforms
 - APL assessment: Disadvantages of RCTA model outweighed advantages (2014)
 - Restrictive, fixed set of metadata
 - Hardcoded self information

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Standards Activity – Current Approach Working with SAE AS-4 JAUS Committee

- Treat "World Model" as a collection of capabilities (services)
- A Multi-Agent application may
 - Mix-and-match these capabilities
 - Have a different mixture of capabilities on each node
- Identify a **factoring of services** that maintains a good **separation of concerns**. E.g.:
 - Autonomy
 - Data fusion
 - Information sharing and synchronization
 - Transport considerations
- Work on standards for foundational pieces
 - Data storage, transport, synchronization

- Current Status
- Initial proposal to SAE AS-4
 Committee in October 2016
- Informal task force established to refine proposal
- Used the proposed standards in our World Model Demo

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Standards Activity – Lessons Learned

• DON'T

- Start with detailed ontology definitions
- Rely on static data definitions
- Try to boil the ocean (single-shot comprehensive solution)

• DO

- Consider system-of-systems from the start
- Consider distributed data from the start
 - Network topologies, discovery, data transfer, replication, ...
 - Hard to retrofit multi-system scenario into single-system architecture
- Design for extensibility as core principle ("design the syntax, not the sentences")
 - Self-describing data definitions and ontology
 - Extensible ontology, sensors, algorithms, mission types, capabilities
- Design for backward compatibility
 - Adapters for legacy systems and architectures (or for COTS architectures)

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Towards a Multi-Agent/Multi-Domain World Model

Requirements

Shared

Within and across systems Vertically and horizontally Timely and relevant

Scalable

Across many heterogeneous agents With differing capacities

Extensible

New kinds of missions and tasking New kinds of domains

Interoperable

Interoperability of data across lifetime Across multiple vendors

Resilient

APL,

Unreliable networks and topologies Node failures Unexpected tasking (on-the-fly teaming)

Lessons for the Future

Consider system-of-systems from the start Consider distributed data from the start

Design for extensibility as a core principle

Value of open interfaces Design for backward compatibility Viability of standards-compliant façades

Testing with physical multi-agent configurations

DISTRIBUTION STATEMENT A – APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

JOHNS HOPKINS APPLIED PHYSICS LABORATORY