
Dr. Ron Barrett
Professor of Aerospace Engineering
Adaptive Aerostructures Laboratory Director

Ms. Lauren Schumacher
Self Graduate Fellow & Ph.D. Candidate

Aerospace Engineering Department
The University of Kansas, Lawrence, Kansas

NDIA 62nd Annual Fuze Conference
13 – 15 May 2019
Buffalo, NY

Paper No: 21779
Outline:

I. Motivation

II. Background

III. New Classes of Adaptive Actuators

IV. Enabled Systems

V. Future Work
Motivation:

• **New Enabling Technologies**
 - lower caliber rounds via MASS designs...
 - new missions...

• **Lines blurred: Missiles ↔ Munitions**

• **Large Cost Savings Possible**
Brief Guided Round History

M712 Copperhead 1975

M247 Sergeant York, 40mm 1986...

I. Motivation II. Background III. New Classes IV. Enabled Systems V. Future
Flight Control Technologies

Electromagnetic
tens to hundreds of components

- Electrical Energy Source
- Command Signal
- Position Feedback
- Gear stages
- Motor
- Push arms, linkages etc.

Adaptive
solid state, rugged

- Electrical Energy Source
- Command Signal
- Position Feedback
- Adaptive actuator part of primary structure

I. Motivation
II. Background
III. New Classes
IV. Enabled Systems
V. Future
Low Caliber Flight Control Actuator Needs...

- Setback tolerance: 5,000 - 100,000g’s
- Balloting, setforward, ringing impervious
- Compatible with supersonic control effectors
- Not affected by atmospherics (rain, dust, dirt, snow, etc.)
- 20 yr storage life
- -40 to +145° F
- Fully proportional deflections
- Lightweight (<1g), Low Volume (<1cc), Low Power (95+% electrical-to-mechanical conversion efficiency)
- High bandwidth (>200 Hz)
Overview of Programs with Lineage to Flying Adaptive UAVs

I. Motivation
II. Background
III. New Classes
IV. Enabled Systems
V. Future
Guiding Lower Caliber Rounds... More History

Barrel-Launched Adaptive Munition (BLAM) Program 1995 - '97

USAF/AFRL-MNAV

- Aerial Gunnery (20 - 105mm)
- Extend Range w/2g maneuver
- (Eglin AFB tests ‘97)
 (Mach 3.3 tests ‘96-'97)
- Increase hit probability
- Increase probability of a kill given a hit
- Reduce total gun system weight fraction
The First MAV... Driving Adaptive FCS

Conventional Electromagnetic

Adaptive Stabilators

+/- 90° Deflections @ 3 Hz

+/-11° Deflections @ >47Hz
Advanced MAVs: Driving the need for Adaptive Actuators -- faster, lighter, stronger

![Bandwidth Comparison Diagram]

Adaptive Surfaces vs. Conventional Servos
- 96% reduction in power consumption
- 16x increase in bandwidth
- 99.2% decrease in slop
- Order of magnitude reduction in part count
- 12% OWE savings

I. Motivation II. Background III. New Classes IV. Enabled Systems V. Future
Guiding Small Arms Rounds... More History

Range-Extended Adaptive Munition (REAM) IRAD
BAT-Lutronix Corp. developed supersonic piezoelectric FCS actuators

Max Power Consumption: 28 mW
Nominal Power Consumption: 3.5 mW
Static Power Consumption: < 1μW
Design Mach Range: 0.8 - 4.5, STP
Design Accelerations: 25k g's

10 mil stainless steel flight control surface

I. Motivation II. Background III. New Classes IV. Enabled Systems V. Future
Other Adaptive FCS Efforts

Rabinovitch & Vinson 2000 - present

again... low authority
can't survive balloting, setback unsteady aero...

Now Where???
Guiding Hard-Launched Rounds... The Epiphany!

Discoveries from Europe...

\[F = k\Delta x \quad \text{F} \neq k\Delta x \]

Eureka!
Guiding Hard-Launched Rounds... The Epiphany!
Increasing Moment-Deflection Design Space
Guiding Hard-Launched Rounds... The Epiphany!

Weight & Cost constrained

Deflection, δ (deg)
Guiding Hard-Launched Rounds... The Epiphany!

- single-crystals
- Weight & Cost constrained
- interdigitated electrode
- hydraulic amplifiers
- stepper motors
- unusual element configurations

I. Motivation II. Background III. New Classes IV. Enabled Systems V. Future
Guiding Hard-Launched Rounds... The Epiphany!
Increasing Moment-Deflection Design Space

I. Motivation
II. Background
III. New Classes
IV. Enabled Systems
V. Future
Guiding Hard-Launched Rounds... The Epiphany!

Increasing Moment-Deflection Design Space

The Limiter: Strain on Convex Face

Tension $+\varepsilon$

Compression $-\varepsilon$
Guiding Hard-Launched Rounds... The Epiphany!

Increasing Moment-Deflection Design Space

Improvement: Precompression via CTE mismatch cure

Tension $+\varepsilon$

Compression $-\varepsilon$
Guiding Hard-Launched Rounds... The Epiphany!

- Require bump-stops to prevent overrotation
- Depoling/fracture boundaries limit deflection
- High in-plane tensile stresses on convex face leads to premature depoling under cyclical loading
- Assembly and tuning is very tricky
Guiding Hard-Launched Rounds... The Epiphany!
Increasing Moment-Deflection Design Space

I. Motivation II. Background III. New Classes IV. Enabled Systems V. Future
Guiding Hard-Launched Rounds... The Epiphany!
Increasing Moment-Deflection Design Space

Facing sheet engagement theories

• First order model: assumption: $y_{sp} = y_{fs}$

$$\tan \theta = \frac{4}{L_{sp}} (y_{0fs} - y_{sp}) \quad (5)$$

• Higher Fidelity model: assumption: $L_{sp} = L_{fs}$

$$L_{fs} = \int_{0}^{L_{sp}} \sqrt{1 + \left(\frac{dy_{fs}(x)}{dx} \right)^2} \, dx = \int_{0}^{L_{sp}} \sqrt{1 + \left(\frac{y_{0fs} \pi}{L_{sp}} \sin \left(\frac{2\pi x}{L_{sp}} \right) \right)^2} \, dx \quad (6)$$

$$L_{fs} = \int_{0}^{L_{sp}} \sqrt{1 + \left(\frac{dy_{sp}(x)}{dx} \right)^2} \, dx = \int_{0}^{L_{sp}} \sqrt{1 + \left(\frac{y_{0sp} \pi}{L_{sp}} \sin \left(\frac{2\pi x}{L_{sp}} \right) + \left(1 - \frac{2x}{L_{sp}} \right) \tan \theta \right)^2} \, dx \quad (8)$$

Equating (6) and (8) allows solution for θ
Guiding Hard-Launched Rounds... The Epiphany!

Increasing Moment-Deflection Design Space

- 2mm wide, 69µm graphite-epoxy facing strips
- 1.7mm thick silicone spacer
- Spacer, $y_{sp}=1.75$mm

\[F_a = L \frac{\sin \left(\frac{\theta}{2} \right) \cos \xi}{\sqrt{\sin^2 \left(\frac{\theta}{2} \right) \cos^2 \xi + \frac{\kappa^2 D_b}{4F_a}}} \left(1 - \sin^2 \left(\frac{\theta}{2} \right) \sin^2 \xi \right) \]

- Uniform facing sheet engagement
- Excellent theory-experiment correlation
- Still pronounced DEAS effect
- 12% mass increase w.r.t. baseline PBP element
Guiding Hard-Launched Rounds... The Epiphany!
Increasing Moment-Deflection Design Space

Proper Dynamic Elastic Axis Shifting (DEAS) Design:

- Tension limit reached on convex face
- Compression limit reached on concave face
- Bond shear stresses below limit

I. Motivation II. Background III. New Classes IV. Enabled Systems V. Future
PBP Actuators: The FCS Solution

- Fraction of the weight, size & power consumption of conventional Actuators (i.e. much smaller actuator bays)
- 300+% deflection increases with full force/moment capabilities
- Mass production compatible
- ±0.01 deg. trimmable
- Extremely high bandwidth
- Lower g-sensitivity
- Very low cost
PBP Actuators: Assemblies

Assembled Hard-Launch Capable Actuator FCS Units:
PBP Actuators: Fastest around...

Best performance in the adaptive structures industry:

- 1kHz equivalent bandwidth
- Driving 0.40/.50 cal Mach 4.5 canards
PBP Actuators: Munitions Comparisons

Smaller, Lighter, Less Expensive, More Rugged...

<table>
<thead>
<tr>
<th></th>
<th>Conventional Electromagnetic FCS</th>
<th>Adaptive/PBP FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>14cc</td>
<td>5.1cc</td>
</tr>
<tr>
<td>Mass</td>
<td>69g</td>
<td>4.2g</td>
</tr>
<tr>
<td>Peak Power</td>
<td>148W</td>
<td>2.6W</td>
</tr>
<tr>
<td>Deadband/Slop</td>
<td>±0.38°</td>
<td>±0.002°</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>22 Hz</td>
<td>189Hz</td>
</tr>
<tr>
<td>Acquisition Cost</td>
<td>$187 ea.</td>
<td>$12.30</td>
</tr>
<tr>
<td>(100,000 shipsets)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I. Motivation

II. Background

III. New Classes

IV. Enabled Systems

V. Future
New Enabled Missions:

Conventional Air-to-Air Missile Replacement
- Airframe Shrinkage
- Force Multiplication
- Counter-Missile
- Self Defense
- LO Enhancement

AMRAAM

45mm MASS GHLM
New Enabled Missions:

Enhanced Aerial Gunnery Capabilities

- 30mm GAU-8/PGU-14 E\textsubscript{Impact} \leftrightarrow 25mm MASS Guided Hard-Launch Munition

- 25mm GAU-22/PGU-47 E\textsubscript{Impact} \leftrightarrow 20mm MASS Guided Hard-Launch Munition

- 20mm M61A1/PGU28 E\textsubscript{Impact} \leftrightarrow 16mm MASS Guided Hard-Launch Munition
New Enabled Missions:

FAC-130...

Air-to-Air...

Indirect Fire Support
New Enabled Missions:

Air-to-Air & Self-defense

FAC-17

Indirect Fire Support...
Questions?