
Semantic Versioning and 

Automated Build 

Assembly
Brian Davenport

John Mallinger

Duane Spence

Approved for Public Release



Build Assembly Introduction

 DevOps Paradigm: Build once and deploy many times – don’t rebuild 

software that hasn’t changed

 Semantic Versioning – identification strategy that indicates type of 

changes and build compatibility included in a build by using defined 

rules and naming convention

 System Build – assembled set of compatible component and 

configuration item builds along with products necessary to support 

install, deploy, and configuration.

Approved for Public Release



Semantic Versioning: An Overview
 Build Once – do not rebuild if nothing has changed

 Version identifier drivers indicator of types of changes in a build

 Major version: change breaks compatibility with external consumers

 Minor version: new capabilities delivered, but change is compatible to 

external consumers

 Patch version: updates and discrepancy fixes in existing capabilities

M.m.p (e.g. 2.3.0)

Developer

Build & 
Package

Functional 
Test

Deliver
Deploy & 

Install

Repeat for DRs & UOW

SW Lead 
Releases

Release 
Candidate

Promote

Increment Minor 
Version (e.g. 2.4.0)

1) If Developer introduces an 
incompatible change, they 
update Major version # & reset 
the Minor & Patch version #s
(M+1).0.0 (e.g. 3.0.0)

2) If a patch is required to 
previously released version, 
the developer increments 
Patch version #
M.m.(p+1) (e.g. 2.3.1)

3) Version is same across all 
products built at the same 
time (e.g. EIS sessions all have 
same version)

Approved for Public Release



Drivers for System Assembly

 The problem: Drowning in DevOps builds

 8 Configuration Items

 160 Custom Software Components

 800+ builds per week

 200+ COTS/FOSS products

 After we build and test individual components, how do we 

assemble into a system?

 A component changed – what do we need to build and 

retest?

Approved for Public Release



System Assembly Pipeline

 Automated selection of component builds

 Incorporates outputs of component pipelines

 Test results tracking from component pipelines

 Compatibility Validation

 Tailoring build outputs for target deploy environments

 Automated Deploy & Checkout

 Stage and deploy system build into representative environment

 Run integration thread tests to validate compatibility and core 

functionality

 Tag system build with test results and assess viability for 

promotion to ops

Approved for Public Release



System View
System Build

Mission Build Platform Build Simulator Build

CI1 CI2 CI3

Middleware CI Compute

Network

Storage

CI4 CI5 CI6

Simulation
Framework

CI7 CI8

Approved for Public Release



Layered Pipelines Driving CI Checkout

Local Data Center

Assemble Stage Deploy
Functional 

Test

Build / 
Assemble

Unit Test Deploy Audit
Functional 

Test
Security Test

Local Data Center AWS GovCloud

Platform Pipeline

VM 
Image

Build Unit Test Deploy Audit
Functional 

Test
Security Test

Local Data Center AWS GovCloud

Middleware Pipeline

VM 
Image

Build Unit Test Deploy Audit
Functional 

Test
Security Test

Local Data Center AWS GovCloud

Mission Pipeline

System Assembly

Artifact 
Repository

Artifact 
Repository

AWS GovCloud

Approved for Public Release



System Assembly Pipeline Overview

Assemble Stage Deploy
Functional 

Test

Create Assembly 
Template & 

Ruleset Template

Run 
Compatibility 

Algorithm

Publish System 
Compatibility 

Matrix

Artifact 
Repository

Download and 
Stage Artifacts

Deploy Platform, 
Mission, and 

Simulator

Run Functional 
Tests against 

deployed env.

Update test 
results

Approved for Public Release



System Release: Assembly

Assemble

Create Assembly 
Template & 

Ruleset Template

Run 
Compatibility 

Algorithm

Publish System 
Compatibility 

Matrix

Artifact 
Repository

Assembly Template:
1. Lists all of the files contained in a release
2. Identifies files and tags to component, CI, and build

Rule Set Template:
1. Defines checks / parameters to validate when 
retrieving files from Artifactory repository
2. References and pulls in data from Compatibility Input 
Table for rule execution and enforcement

Compatibility Input Table
1. Defines major changes and impacted components
2. Supports tracking component change alignment

Asynchronous manual 
generation of ruleset 

for assembly

Run rulesets against 
latest compatibility 

input table

Generate detailed 
compatibility matrix 

and version 
requirements for 
system assembly

Approved for Public Release



Case Study: Compatibility Matrix

Release 
Managers

Release 
Planning 
Meetings

CM
Repo.

Change# Status CI1 CI2 CI3 CI4

Change1 In-Progress 3 2 1 2

Change2 In-Progress 4 2 3

Change3 In-Progress 5 3 4

Change4 In-Progress 6 4 3 5

Change5 In-Progress 4 6

Date CI1 CI2 CI3 CI4

4/16 2.5.0 1.2.0 1.0.0 1.5.0

4/18 3.0.0 2.3.0 1.0.1 1.6.0

4/19 4.0.0 2.4.0 1.1.0 2.0.0

4/20 4.0.1 2.4.1 2.0.0 3.0.0

4/25 4.0.2 2.4.2 2.1.0 3.1.0

4/30 4.1.0 2.4.3 2.2.0 4.0.0

5/1 5.0.0 2.4.4 2.3.1 4.1.0

Job's Run Date >> 4/18 4/19 4/22 4/30

Rel# Mission_1.0 1.0.0.23 1.1.0.34 2.0.0.43 2.1.0.53

CI1 2.5.0 3.0.0 4.0.1 4.1.0

CI2 1.2.0 2.4.0 2.4.1 2.4.3

CI3 1.0.1 1.1.0 2.0.0 2.2.0

CI4 1.6.0 2.0.0 3.0.0 3.1.0

Release Manifest File VersionContent

CI1 interface 

change impacts 

CIs 2, 3, and 4

Updates delivered

and complete

pipeline at

different times

Change injected

when all CIs

deliver & pass

pipeline checkout

Approved for Public Release



Designing for System Assembly
 Identify lowest level at which a system can / should be patched

 Structure versioning strategy and build strategy to be independent at that level

 Needs to account for patching / update CONOPS and available outages

 Define dependencies associated with each component and CI

 Need to capture both interfaces and APIs / shared libraries

 Also track runtime and

 Decompose build assembly architecture

 Strategy for rolling up and combining system builds

 Approach for validating compatibility across components and subsystems

 Assess core set of tests needed to promote build

 What component / CI checkouts are required as part of each lower level build?

 What system-level tests should be completed to validate system build integration?

 What is an acceptable risk / discovery posture for the next downstream user?

Approved for Public Release



Lessons Learned

 Drive culture that supports continuous change delivery

 Continuous deliveries of change

 Always maintain a working build and working system

 Requires more product oriented mindset

 Legacy CM strategies limited build and versioning at component level

 Goal: Component level builds and patches for every mission software 

component

 Issue: Extensive cross-component dependencies within a CI drove some 

cases of larger builds

 Design automated tests for reuse across all I&T environments

 Automated tests can spread out beyond their initial purpose

 Leverage common test architecture across all environments to maximize 

reuse and avoid refactoring

Approved for Public Release


