

Leveraging Vulnerability Prediction Models to Aid Cyber Security Planning

Raymond Chow

raymond.chow@lmco.com

Lockheed Martin

Shahram Sarkani, Ph.D.

<u>sarkani@gwu.edu</u>

George Washington University

Thomas Mazzuchi, D.Sc.

<u>mazzu@gwu.edu</u>

George Washington University

Presentation Outline

- Background
- Purpose
- Methodology
- Results
- Discussion
- Conclusion
- References
- Q&A

Background

- Maintaining Cyber Security has remained a challenge despite new research and advances in technology.
 - Threats Little to no control
 - Vulnerabilities More control, but reactive rather than proactive
- Research attempts to forecast the time to next vulnerability using publicly available data has met with mixed results.¹
- Research conclusions addressed applicability of predictive models but did not provide examples where these models can be practically applied.²

Purpose

- Instead of gauging security by next vulnerability occurrence, this study examines whether the level of effort required for cyber security can be tempered by projected increases or decreases in the number of future vulnerabilities.
 - Develop vulnerability prediction models for representative system
 - Predict whether the security budget will need to be increased or funds can be held in reserve based on trends
 - Utilize seasonality in vulnerabilities to guide scheduling of cyber security activities

Methodology

- Step 1: Define Representative System
 - Red Hat Enterprise Linux Workstation
 - Red Hat Enterprise Linux Server
 - Windows Server 2008
 - Windows 7
 - Internet Explorer
 - Microsoft SQL Server

Methodology (cont. 1)

- Step 2: Collect Vulnerability Data
 - Source National Vulnerability Database (NVD)³
 - Aggregate Totals by Month
- Step 3: Time Series Analysis
 - Autoregressive Integrated Moving Average (ARIMA)⁴
 - Exponential Smoothing Models⁵

Methodology (cont. 2)

- Step 4: Utilize Predictions
 - Examine Predicted Vulnerability Totals to Guide Cyber Security Budget Allocation
 - Schedule Cyber Security Assessment and Resolution Activities to Minimize Vulnerability Persistence/Duration

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Leveraging Vulnerability Prediction Models to Aid Cyber Security Planning

Observed

----- Forecast

- Fit

Results (cont. 1) – Statistical Values and Predictions

Softwara	Madal	Stationary P ²	Normalized RIC		Ljung-Box ⁶	
Soltware	Model	Stationary K	NOTTIAIIZEU BIC	Statistics	DF	Sig.
MS SQL Server	Simple Seasonal	0.732	0.396	13.724	16	0.619
RHEL Server	Simple Seasonal	0.444	4.521	9.121	16	0.908
RHEL Workstation	Simple Seasonal	0.454	4.558	7.651	16	0.959
Windows 7	Simple Seasonal	0.720	3.718	14.071	16	0.593
Windows Server 2008	Simple Seasonal	0.714	3.678	13.965	16	0.601
Internet Explorer	ARIMA(0,1,1)(1,0,0)	0.492	3.794	20.698	16	0.190
Internet Explorer	Simple Seasonal	0.631	3.727	37.699	16	0.002

Coftwara			_			Pred	iction	_					Total (2017)
Software	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	10tal (2017)
MS SQL Server	1	0	0	0	0	0	1	1	1	1	1	1	7
RHEL Server	7	7	6	6	9	22	6	5	6	8	6	8	96
RHEL Workstation	7	7	5	6	9	22	6	5	6	8	6	8	95
Windows 7	10	15	12	13	11	11	13	14	10	12	13	12	146
Windows Server 2008	8	13	11	12	10	11	11	12	10	12	11	11	132
Internet Explorer	5	9	9	7	13	7	10	8	9	8	7	7	99
Total (2017)	38	51	43	44	52	73	47	45	42	49	44	47	575

Results (cont. 2) – Budget Considerations

Coftwara		Vulnerabilities				
Software	Total (2016)	Predicted Total (2017)	% Change			
MS SQL Server	6	7	16.66666667			
RHEL Server	126	96	-23.80952381			
RHEL Workstation	126	95	-24.6031746			
Windows 7	134	146	8.955223881			
Windows Server 2008	133	132	-0.751879699			
Internet Explorer	129	99	-23.25581395			
Overall Total	654	575	-12.0795107			

- Lower # of Vulnerabilities Expected in 2017
- No Budget Modification Suggested
 - Small Predicted Change (~12%)

Results (cont. 3) – Scheduling Resolution Activities

Areas of Consideration						Pred	iction					
Areas of Consideration	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17
Vulnerabilities Discovered	38	51	43	44	52	73	47	45	42	49	44	47
Potential to be Addressed	0	38	89	132	176	228	301	348	393	435	484	528
Persistant Vulnerability Value	0	0	38	127	259	435	663	964	1312	1705	2140	2624

- Scheduling Goals:
 - Maximize Vulnerabilities Addressed
 - Minimize Persistent Vulnerability
 - Minimize Leftovers for Next Year

Leftovers on Jan-18 if No Acti	on
Open Vulnerabilities	575
Persistent Vulnerability Value	3152

Results (cont. 3) – Scheduling Resolution Activities

Areas of Consideration			_		_	Predi	ction					
	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17
Vulnerabilities Discovered	38	51	43	44	52	73	47	45	42	49	44	47
Potential to be Addressed	0	38	89	132	176	228	301	348	393	435	484	528
Persistent Vulnerability Value	0	0	38	127	259	435	663	964	1312	1705	2140	2624

	Areas of Consideration			Predi	ction		
	Areas of consideration	Jul-17	Aug-17	Nov-17	Dec-17		
Scheduled Activities	Vulnerabilities Discovered	47	45	42	49	44	47
in lune	Potential to be Addressed	73	120	165	207	256	300
	Persistent Vulnerability Value	0	0	47	139	273	456

Leftovers on Jan-18	
Open Vulnerabilities	347
Persistent Vulnerability Value	683

	Areas of Consideration Prediction							
Scheduled Activities	Areas of Consideration	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Leftovers on Jan-18	
in July	Vulnerabilities Discovered	45	42	49	44	47	Open Vulnerabilities	274
	Potential to be Addressed	47	92	134	183	227	Persistent Vulnerability Value	448
	Persistent Vulnerability Value	0	0	45	132	268		

Results (cont. 4) – Model Accuracy vs Actuals

Coffigure						Predi	ction						Tatala (Dradiatad)		
Software	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Totals (Predicted)	Totals (Actuals)	SIVIAPE
MS SQL Server	1	0	0	0	0	0	1	1	1	1	1	1	7	1	
MS SQL Server (Actuals)	0	0	0	0	0	0	0	1	0	0	0	0	/	Ŧ	N/A
RHEL Server	7	7	6	6	9	22	6	5	6	8	6	8	06	Γ1	
RHEL Server (Actuals)	4	0	0	8	0	6	5	1	0	17	3	7	90	51	108.4098
RHEL Workstation	7	7	5	6	9	22	6	5	6	8	6	8	05	40	
RHEL Workstation (Actuals)	4	0	0	8	0	5	5	1	1	7	2	7	95	40	102.5068
Windows 7	10	15	12	13	11	11	13	14	10	12	13	12	146	220	
Windows 7 (Actuals)	1	1	57	8	26	50	22	9	23	20	10	2	140	229	93.18991
Windows Server 2008	8	13	11	12	10	11	11	12	10	12	11	11	122	242	
Windows Server 2008 (Actuals)	1	1	60	15	27	51	22	10	25	19	10	2	132	243	89.32234
Internet Explorer	5	9	9	7	13	7	10	8	9	8	7	7	00	70	
Internet Explorer (Actuals)	0	1	11	3	6	7	7	7	7	5	12	13	99	79	63.84142
Total (Predicted)	38	51	43	44	52	73	47	45	42	49	44	47		642	
Total (Actuals)	10	3	128	42	59	119	61	29	56	68	37	31	5/5	043	53.96408

Results (cont. 5) – Budget Considerations Revisited

Coftwara		Vulnerabilities	
SOItware	Total (2016)	Actual (2017)	
MS SQL Server	6	7	1
RHEL Server	126	96	51
RHEL Workstation	126	95	40
Windows 7	134	146	229
Windows Server 2008	133	132	243
Internet Explorer	129	99	79
Overall Total	654	575	643

- Prediction of Lower # of Vulnerabilities vs 2016
- Budget Recommendation Unchanged

Results (cont. 6) – Scheduling Revisited

Areas of Consideration						Act	uals					
Areas of consideration	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17
Vulnerabilities Discovered	10	3	128	42	59	119	61	29	56	68	37	31
Potential to be Addressed	0	10	13	141	183	242	361	422	451	507	575	612
Persistent Vulnerability Value	0	0	10	23	164	347	589	950	1372	1823	2330	2905

	Areas of Consideration	Actuals							
Scheduled Activities		Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Leftovers on Jan-18	
	Vulnerabilities Discovered	61	29	56	68	37	31	Open Vulnerabilities	401 762
in June	Potential to be Addressed	119	180	209	265	333	370	Persistent Vulnerability Value	762
	Persistent Vulnerability Value	0	0	61	151	297	511	/	

	Aroas of Consideration			Actuals				
Scheduled Activities		Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Leftovers on Jan-18	
in July	Vulnerabilities Discovered	29	56	68	37	31	Open Vulnerabilities	282
In July	Potential to be Addressed	61	90	146	214	251	Persistent Vulnerability Value	457
	Persistent Vulnerability Value	0	0	29	114	267		1.07

✓ July Remains the Optimal Month to Conduct Activities

Discussion

- NVD Data Accuracy
 - Entries using different names (e.g. IE vs Internet Explorer)
 - Entries without clear software version
- Predictive Models Accuracy
 - Budget changes should be driven by significant trends with excess funds held in reserve
- Current Methods are Computationally Intensive

Conclusion

- Vulnerability Prediction Models can be Leveraged as a Planning Aid for Cyber Security Activities
 - Proactive allocation of resources
 - Balance between addressing maximum number of vulnerabilities and minimizing persistent vulnerabilities (while also minimizing future impact)
- Potential Future Research
 - Test applicability to other representative systems
 - Improve prediction accuracy

References

- 1. Zhang, Su, Xinming Ou, and Doina Caragea. 2015. "Predicting Cyber Risks through National Vulnerability Database." Information Security Journal: A Global Perspective 24 (4-6): 194-206. doi:10.1080/19393555.2015.1111961.
- 2. Roumani, Yaman, Yazan F. Roumani, and Joseph K. Nwankpa. 2015. "Time Series Modeling of Vulnerabilities." Computers & Security 51: 32-40. doi:10.1016/j.cose.2015.03.003.
- 3. National Vulnerability Database (NVD). "NVD Data Feeds." 2018. https://nvd.nist.gov/vuln/data-feeds (accessed August 15, 2018)
- 4. Box, George E. P., Gwilym M. Jenkins, Gregory C. Reinsel, Greta M. Ljung, and Greta M. Ljung. 2015. *Time Series Analysis : Forecasting and Control*. Wiley Series in Probability and Statistics. Fifth edition ed. New York: John Wiley & Sons, Incorporated.
- 5. Holt, Charles C. 2004. "Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages." *International Journal of Forecasting* 20 (1): 5-10. doi:10.1016/j.ijforecast.2003.09.015.
- 6. G. M. Ljung and G. E. P. Box. 1978. "On a Measure of Lack of Fit in Time Series Models." *Biometrika* 65 (2): 297-303. doi:10.1093/biomet/65.2.297.
- 7. Armstrong, Jon Scott. 1985. Long-Range Forecasting. 2. ed. ed. New York [u.a.]: Wiley.

Q&A

Raymond Chow 858-267-5349 Lockheed Martin raymond.chow@lmco.com