

The Sensor Open Systems Architecture (SOSA[™]) in a Nutshell

Dr. Steven A. Davidson

Raytheon Space and Airborne Systems Chair, SOSA Architecture Working Group October 24, 2018

The SOSA Consortium is a C4ISR-focused technical and business collaborative effort...

- <u>Who</u>: The Air Force, Navy, Army, other government agencies, and industry
- <u>What</u>: To develop a unified technical Open Systems Architecture standard for radar, EO/IR, SIGINT, EW, and Communications – and the supporting business model
- <u>Why</u>: To improve sub-system, system, and platform affordability, reconfigurability, upgradability, and hardware/software/firmware re-use
- <u>How</u>: By developing an OSA via modular decomposition (defining functions and behaviors) and associated interfaces (including physical, protocol, and data structure) between the modules

^{*} Based on abstract of "Sensor Open System Architecture (SOSA) Evolution for Collaborative Standards Development," SPIE Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2017

SOSA Consortium Member Organizations

Raytheon Space and Airborne Systems

Sponsor Level

Air Force LCMC Lockheed Martin NAVAIR Raytheon Rockwell Collins US Army PEO Aviation

Principal Level

OPEN GROUP

BAE Systems, Inc. GE Aviation Systems General Dynamics Mission Systems Harris Corporation Leonardo DRS U.S. Army RDECOM CERDEC I2WD UTC Aerospace Systems

Associate Level

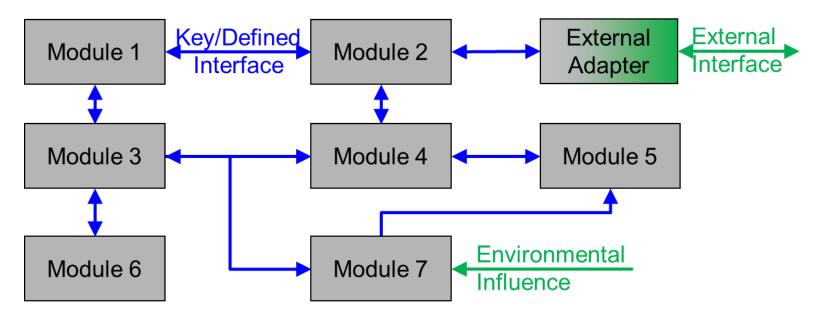
Abaco, Annapolis Micro Systems, Inc. Behlman Electronics, Inc., Crossfield Technology, Curtiss-Wright, Delta Information Systems, DRTI, Elma, Gore, Herrick Technology Laboratories, Inc., iRF Solutions, Joint Technical Networking Center, KEYW Corporation, Kontron America, L3 Technologies, Inc., Leidos, Mercury Systems, Meritec, North Atlantic Industries, Inc., Northrop Grumman, OAR Corporation, Pentek, Inc., QubeStation, Inc., Rantec Power Systems, Inc., Real-Time Innovations, Samtec, Selex Galileo Inc, SimVentions, Southwest Research Institute, Spectranetix, Inc., Technology Service Corporation, Telephonics, Tucson Embedded Systems, VTS, Inc.

Outline

- SOSA Fundamentals
- SOSA Consortium
- Foundational Methodology
- SOSA Consortium Products

SOSA Fundamentals

- Architecture: "The fundamental organization of a system embodied in its <u>components</u>, their <u>relationships</u> to each other and to the environment, and the principles guiding its design and evolution*"
- Design: The result of transforming requirements into specified characteristics or into the specification of a product process or system** –
 - An <u>instantiation</u> of the architecture here can be multiple designs that conform to the same architecture


The SOSA Consortium is developing an <u>architecture</u>, not a design

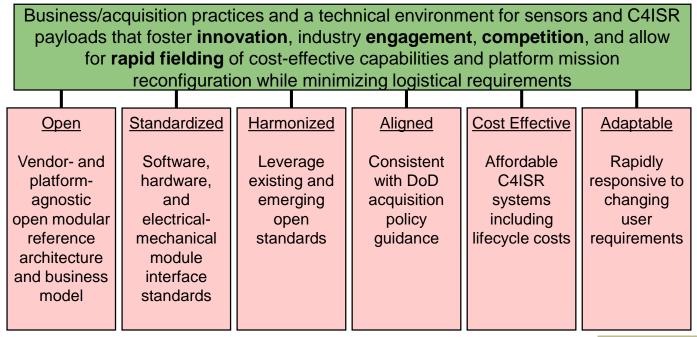
^{*} From ISO/IEC 42010 - IEEE Std 1471-2000 "Systems and software engineering — Recommended practice for architectural description of software-intensive systems

^{**} Based on ISO 9000:2005 – "Plain English Definitions"

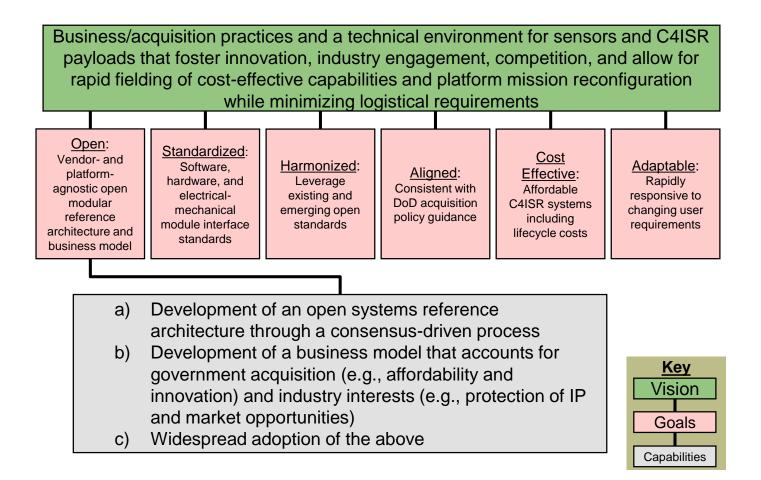
What an OSA "Looks Like"

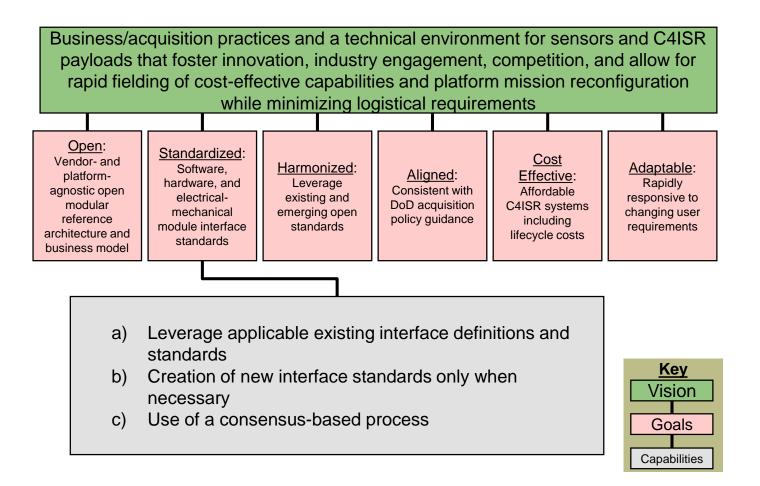
- Modules (can be physical or logical or a combination):
 - Activities/functions and behaviors
 - Physical properties

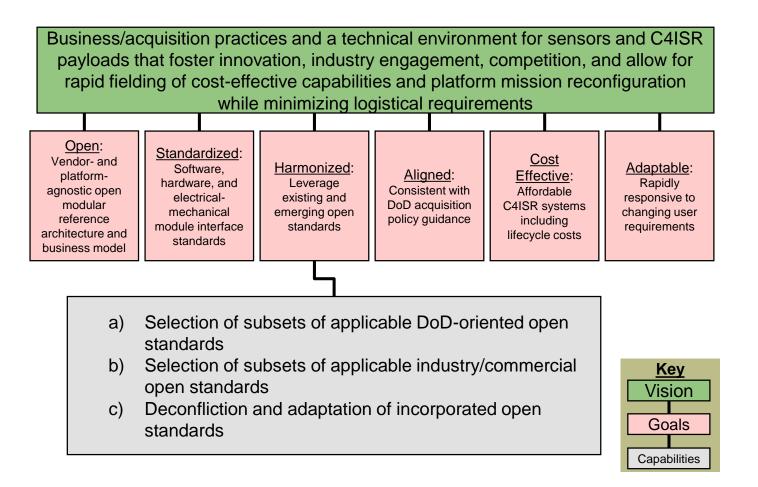
- Interfaces: Physical or logical "touch points"
 - Information exchange, protocols, data content, data format
 - Mechanical connections

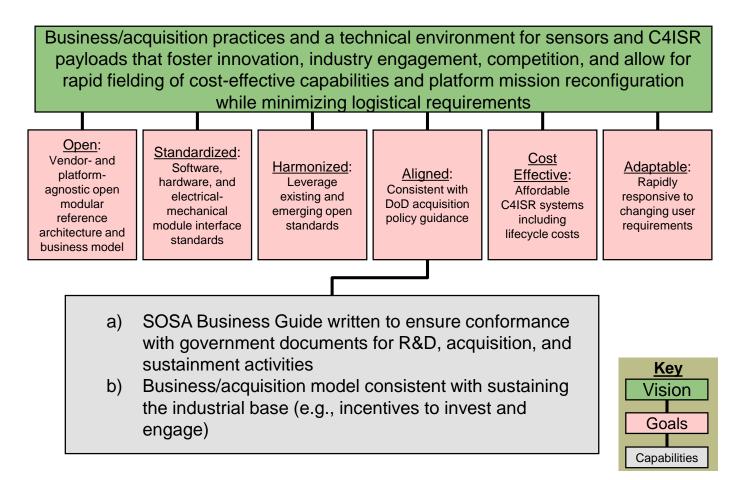

SOSA Technical Architecture is a Modular Open Systems Architecture

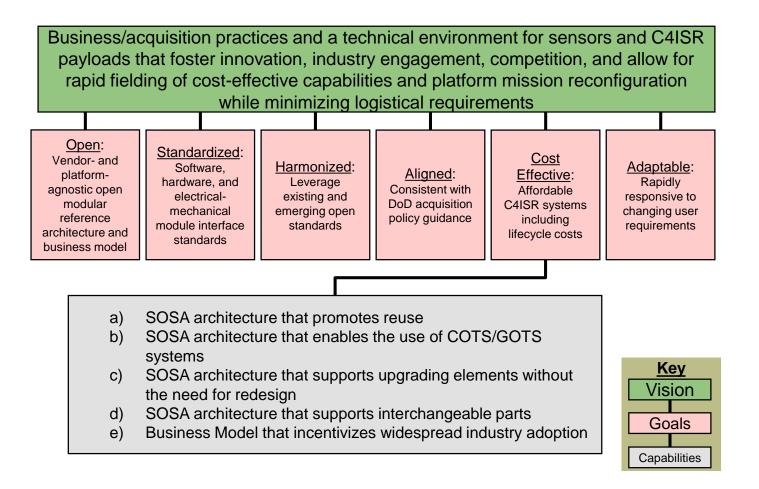
- Modular:
 - Has encapsulated functionality and behaviors, with well-defined interfaces
 - Tightly integrated modules, loosely coupled with others
- Open:
 - 1. Widely-available, published definitions ← Necessary but not sufficient
 - 2. Consensus-based ("interested parties" can shape it) and has a governance process to enables stakeholders to influence and effect the development and evolution
 - 3. Has conformance/compliance validation process

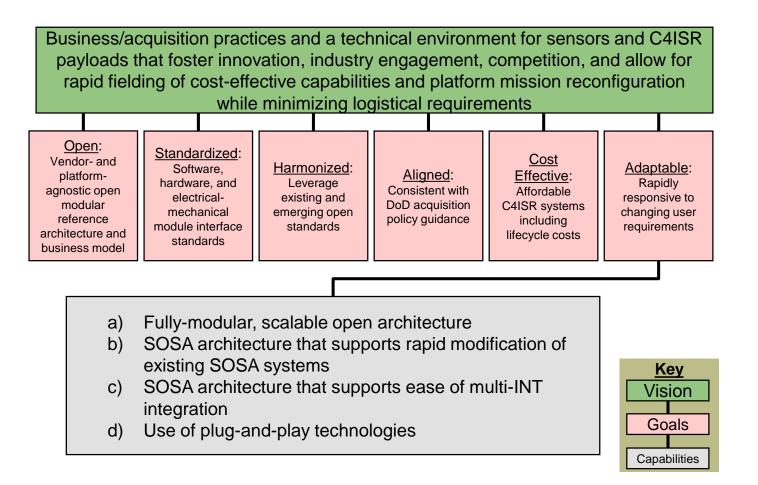

Gray Box Concept: The OSA defines <u>what</u> the box does and the interfaces between boxes, but NOT <u>how</u> it does it (the IP is inside the box)


Anticipated SOSA Benefits


- Faster/more efficient and more cost-effective
 - Acquisition without sacrificing capability
 - Systems integration
 - Technology transition
- Improved Lifecycle and supportability
 - Tech insertion (new capability)
 - Commonality and reuse of components
 - Tech insertion (obsolescence)
- Interoperability
 - Between OSA-based systems
 - Within deployed Product Families



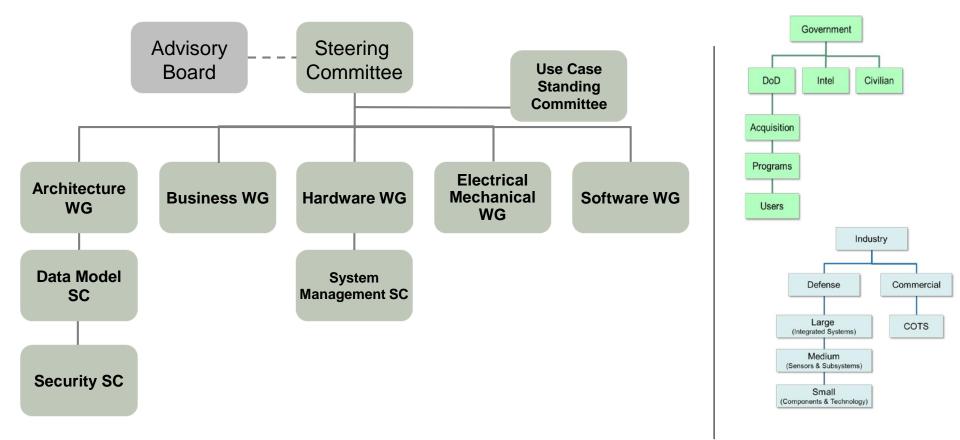

Key
Vision
Goals
Capabilities



Challenges We Must Address

- Competing interests
- Establishing trust relationships
- Establishing a business/acquisition strategy that balances the interests (and addresses the concerns) of all stakeholders
- Near-term investment and cultural changes needed to realize the long-term benefits of OSA
- Conventional planning and acquisition process not optimized for OSA
- Traditional contracting models assume requirements can be fully defined up front
- COTS standards and products may be ill-suited for many DoD missions

SOSA Consortium


Creates a common framework for transitioning sensor systems to an open systems architecture, based on key interfaces and open standards established by industry-government consensus

Business Architecture: Acquisition Model and Conformance Program

<u>Technical Architecture</u>: Reference Architecture in the form of a Technical Standard

SOSA Consortium Organization and Makeup

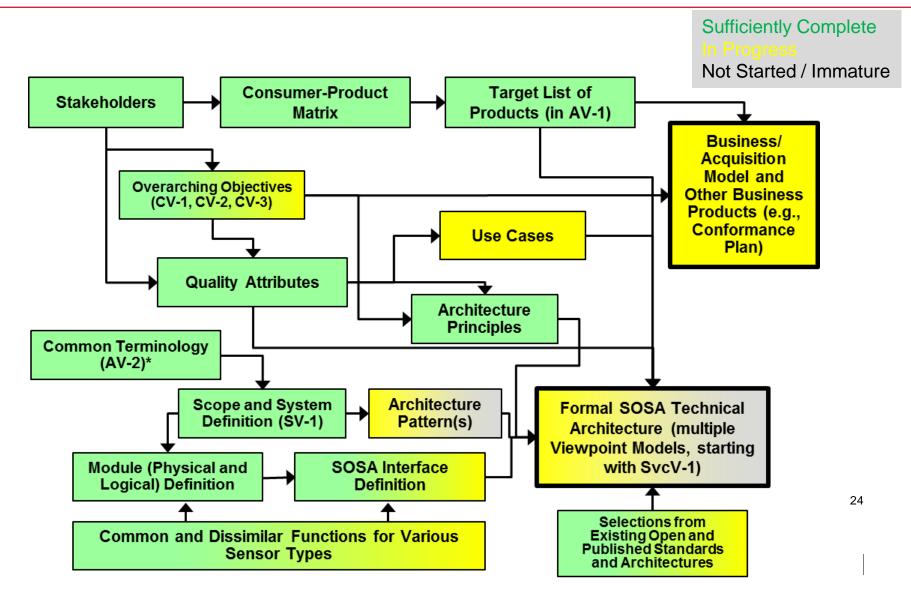
Working Group Leadership

Business

- Chair: John Bowling (AFLCMC)
- Vice-chair: Jason Jundt (GE Aviation)
- Architecture
 - Chair: Steve Davidson (Raytheon)
 - Vice-chair: Paul Clarke (Northrop Grumman)
- Electrical Mechanical
 - Chair: Tim Ibrahim (L3 Sonoma EO)
 - Vice-Chair: George Dalton (KeyW)

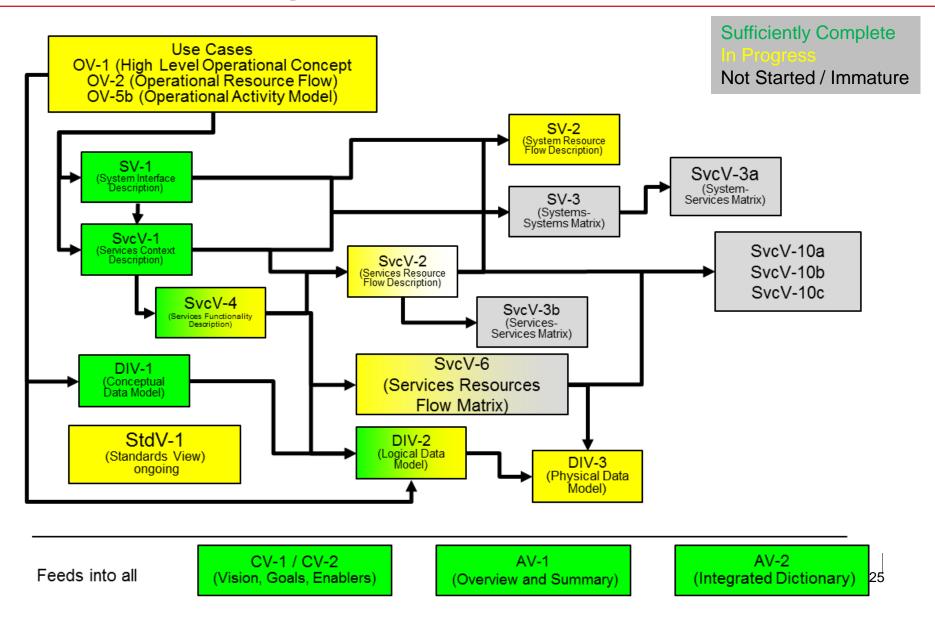
Hardware

- Chair: Patrick Collier (Harris Corporation)
- Vice-chair: Jason Dirner (U.S. Army RDECOM CERDEC I2WD)
- Software
 - Chair: Mike Orlovsky (Lockheed Martin)
 - Vice-chair: Michael Moore (support to U.S. Army RDECOM CERDEC I2WD)


Foundational Methodology

Following an Enterprise Architecture Approach

Raytheon Space and Airborne Systems


- Driven by business needs
 - Balancing concerns of the government and industry
- Top-down, fundamentals basis
 - Based on agreed-upon drivers grounded in how the Business and Technical Architectures will be used
- Following DoD MOSA guidance
 - 1. Widely available and published
 - 2. Consensus-based in creation and governance
 - 3. Verification process to ensure correct interpretation of the Technical Standard

SOSA Process Flow: Color Coded

SOSA Technical Architecture Artifact Roadmap

Raytheon Space and Airborne Systems

SOSA Quality Attributes (1 of 2)

Name	Description
Interoperability	The ability of the system to provide data/information to – and accept the same from – other systems, and to use the data/information so exchanged to enable them to operate effectively together. In the context of SOSA, this QA refers to the ability of SOSA-based systems to be able to exchange information during operation, and (possibly with adaptation) be able to interoperate with non-SOSA- based systems
Securability	The property of a system such that its design renders it largely protected/inviolable against acts designed to (or which may) impair its effectiveness, and prevents unauthorized persons or systems from having access to data/information contained therein. In the context of SOSA, this QA ensures that the fundamental architecture is one that has minimal attack surfaces and effective authentication enforcement, and SOSA-based systems can be designed so that they can adapt to an evolving threat environment.
Modularity	The degree to which a system or element is composed of individually distinct physical and functional units that are loosely coupled with well-defined interface boundaries. In the context of SOSA, this QA enforces the establishment of well-defined, well-understood, standardized system modules that can be created and tested individually for function and conformance.
Compatibility	The ability of a system to coexist with other systems without conflict or impairment, or be integrated or used with another system of its type. In the context of SOSA, this QA refers to the ability of SOSA-based systems to be used or integrated with non-SOSA-systems, or with systems designed with earlier versions of the SOSA standard (backwards compatible).
Portability	An attribute that describes the reuse of existing hardware or software elements (as opposed to the creation of new) when moving hardware or software elements from one environment (physical or computing) to another. In the context of SOSA, this QA refers to the ability of SOSA-based hardware and software to be used, without modification, in other SOSA-based environments (e.g., different operational domains, different systems, and different sensor modalities), but does not necessarily imply the porting to vastly different physical environments (e.g., operating temperature, shock, vibration – which are design, not architectural, features)

SOSA Quality Attributes (2 of 2)

Name	Description
Plug-and- playability	The capability of a system to recognize that a hardware component has been introduced and subsequently use it without the need for manual device configuration or operator intervention (e.g., USB devices) In the context of SOSA, this QA refers to the ability of a SOSA-based system to recognize the introduction of SOSA-based modules, and through a protocol exchange, to understand and use the capabilities and services that the module offers.
Upgradeability	The ability of a system to be improved, enhanced, or evolved without fundamental physical, logical, or architectural changes. In the context of SOSA, this QA refers to the ability of a SOSA-based system to have specific system, hardware, or software elements replaced with more modern or more capable elements without significant change to the rest of the system
Scalability: Sensor Multiplicity	The capability of a system to cope and perform well under an increased or expanding workload or increased demands, and to function well when there is a change in scope or environment – and still meet the mission needs. In the context of SOSA, this QA refers to the ability of the SOSA architecture to accommodate a multiplicity of sensors, constrained only by design-specific limitations.
Scalability: Platform Size	The capability of a system to cope and perform well under an increased or expanding workload, increased demands, and to function well when there is a change in scope of environment and still meet the mission needs. In the context of SOSA, this QA refers to the ability of the SOSA architecture to be applied to platforms that range from the small (e.g., Class I UAS) to large surveillance aircraft – and possibly even spacecraft
Resiliency	The ability of a system to continue or return to normal operations in the event of some disruption, natural or man-made, inadvertent or deliberate, and to be effective with graceful and detectable degradation of function. In the context of SOSA, this QA refers to the ability of SOSA-based systems to be able to maintain operations while under "duress" caused by physical damage, electronic interference, or cybersecurity attack.

SOSA Architecture Principle's Names

Business-oriented

- 1. The SOSA business and technical architectures is vendor agnostic
- 2. SOSA Consortium Products are provided royalty-free
- 3. SOSA Products and Processes Protect the Intellectual Property of Vendors

Technically-oriented

- 4. SOSA Standard is Extensible and Evolvable
- 5. SOSA Architecture Maximally Leverages/Incorporates Existing Industry and Government Standards
- 6. Resilience (including Cybersecurity) is Enabled by the Architecture
- 7. SOSA Architecture is Agnostic with Respect to Host Platform
- 8. SOSA is Agnostic with Respect to Processing Environment
- 9. Every SOSA Module has Defined Logical Interfaces
- 10. Every SOSA Hardware Element has Defined Physical Interfaces
- 11. SOSA Architecture Accommodates Simple through Complicated Systems
- 12. SOSA Architecture Accommodates Small through Large Systems
- 13. Modularity is fundamental to SOSA Physical and Logical
- 14. Interchangeability is Fundamental to SOSA
- 15. Reuse is fundamental to SOSA

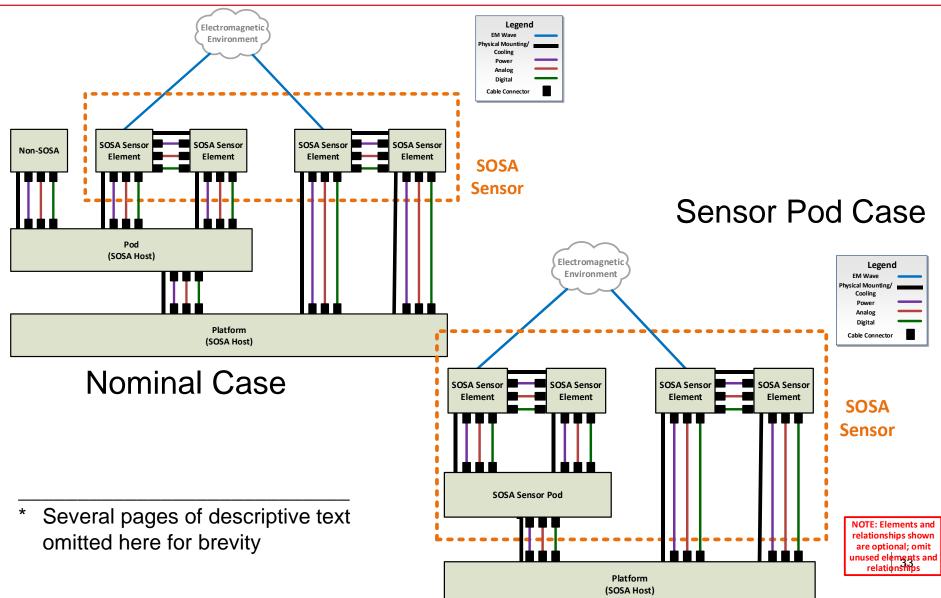
Each Architecture Principle:

- Statement/Description
- Rationale
- Implications for SOSA

Architecture Principles: Raytheon SOSA Example (three of the fifteen shown)

	Name	#1 The SOSA business and technical a	rchitectures	is vendor agnostic			
	Statement The modules and interfaces that make up the SOSA technical architecture and standard, and the processes and practices that make up the SOSA business/procurement architecture, is equally bene to all vendors, offering no inherent advantage or disadvantage to any one company or business sectors.						
	Rationale	The first Goal of SOSA is "Open: Vendor- and platform-agnostic open modular reference architecture and business model," and as such, the SOSA business and technical architecture supports a "level playing field" to ensure business fairness, and that the best technical solution, regardless of vendor source, can be incorporated into systems based on the SOSA technical architecture.					
	Implications	The business architecture of SOSA ensures that there are no barriers for stakeholder participation in the development or use of the SOSA architecture. This includes making material available, eliminating financial barriers (or ensuring that they are minimal). The acquisition model is one that enables all qualified vendors to participate. The technical architecture incorporates standards that favor no particular vendor by					
Name		ble standards for which all qualified vendors have equivalent					
Statement	equivalent modules re would be possible to in	A systems are able to be replaced by rdless of the source. Moreover it rchange one (entire) SOSA system m (provided it does not violate	Name	# 7 SOSA Architecture is agnostic with respect to host platform			
	physical/environmental requirements).		Statement	The SOSA Architecture and Standard applies to a wide range of host platforms (e.g., aircraft, ground vehicle, ship), and makes no assumption regarding the type of vehicle or installation it is resident in or upon			
Rationale	The goals of the SOSA effort include openness (platform and vendor-agnostic) and rapid response. The Quality Attributes include plug-and-playability and upgradability. Essential to these objectives is the need to be able to interchange SOSA modules to achieve goals, such as using module replacement to upgrade a sensor or modify it because of a changing mission need. This will result in a more robust marketplace where subsystem upgrades become more commonplace as						
			Rationale	Conformance and adherence to this principle engenders hardware and software interoperability and reuse across multiple platforms and multiple mission types. Enabling and maximizing reuse lowers overall development costs and operational costs over the lifetime of any particular program			
	the ease of modular upgrades become apparent. Interfaces are very well defined and yet contain a high degree of flexibility. Module-unique interface technologies should be avoided in favor of those that are broadly-applicable. Interface definitions are superset definitions; they include all the functionality/capability that a SOSA module or system is anticipated to include. The architecture defines a default behavior for situations where all functions supported in the interface are not implemented.		Implications	s The development of the SOSA Technical Standard takes into			
Implications				account a wide range of physical and environmental conditions, and so it specifies, for example, a range of standards-based connector types appropriate for the variety of environments. This may have implications on plug-and- playability, and so it is important that one type of interface (for one environment) easily be adapted (through interface conversion and/or software shim) to another. This enables, for example, a small-vehicle sensor to be leveraged for a large platform.			

- Create a <u>superset</u> reference architecture that can be used for the full range of target sensor systems
 - Not all sensors have to incorporate every module (e.g., processing <u>may</u> be done in a large sensor, or off-board for a small sensor)
- Leverage commonality between sensor types as much as the physics will permit
 - E.g., image geo-registration for SAR and EO/IR images
 - E.g., apertures different and no REX, for EO/IR


SOSA Consortium Products

Important SOSA Terms to Understand

Raytheon Space and Airborne Systems

- Interface: The region (physical or logical) where two systems or elements meet and interact
- Sensor: A device or system that actively or passively detects the physical properties of another entity and produces quantitative data that will be subsequently processed or used (e.g., radar, sonar, IR focal plane, seismometer, etc.) and consist of one or more SOSA Sensor Elements mounted within or on the same platform
- Hardware Element: An allencompassing term for hardware that is incorporated into a SOSA sensor
- Plug-In Card: Term for any hardware element that is a circuit card that plugs into a backplane
- SOSA Plug-In Card: Any Plug-in Card that conforms to a SOSA slot profile
- Software Component: A unit of software that is incorporated into a SOSA sensor
- SOSA Module: A combination of Hardware Elements and/or Software Components can be instantiated in a way that <u>conforms to the complete</u> <u>definition</u> (functionality, behavior, and interfaces) of the SOSA Modules as defined in the SOSA Technical 32 Standard (SvcV-1 and SvcV-4)

SV-1 (Systems Interface Description*)

Raytheon Space and Airborne Systems

SOSA Module Definition Process

- Identified <u>functions</u> performed within radar, EO/IR, SIGINT, EW, and communications systems
- Aggregated these <u>functions</u> into logical groups, <u>SOSA Modules</u>, based on the following criteria:
 - 1. Severable (can be separated and used elsewhere) based on business needs, timing requirements, or other drivers
 - 2. Has minimal complexity interfaces (minimum interdependencies)
 - 3. Can operate as stand-alone or be operated via function/process/system manger (that can operate it as stand-alone)
 - 4. Is independently testable
 - 5. Does not expose IP
 - 6. Facilitates competitive procurement
 - 7. Encapsulates rapid change
- For each function within a SOSA Module, we identified
 - What is required for input (not provided by another function inside that SOSA Module) ,and
 - What it produced for an output that is used outside the SOSA Module

The SOSA Technical Standard specifies <u>what</u> the modules do, but <u>not how</u> they do it (IP and innovation are preserved)

SOSA Modules' Definition

- ID Number: Numerical designator: Major-point-minor
- Name: Succinct label
- Description: Paragraph that explains the encapsulated functionality
- Function List: List of functions contained within the SOSA Module
- Inputs: List of data items and controls that are ingested by the Module (in certain cases, their sources)
- Outputs: List of data items that are produced by the SOSA Module (in certain cases, their destinations)

SOSA Sensor Management

- 1.1: System Manager
- 1.2: Task Manager

Transmission/Reception:

- 2.1: Receive Aperture/ Transducer/ Camera
- 2.2: Transmit Aperture/ Transducer/ Laser
- 2.3: Conditioner-Receiver-Exciter

Process Signals/Targets

- 3.1: Signal/Object Detector and Extractor
- 3.2: Signal/Object Characterizer
- 3.3: Image Pre-Processor
- 3.4: Tracker

Analyze/Exploit

- 4.1: External Data Ingestor
- 4.2: Encoded Data Extractor
- 4.3: Situation Assessor
- 4.4: Impact Assessor and Responder
- 4.6: Storage/Retrieval Manager

<u>Convey</u>


5.1: Reporting Services

Support System Operation

- 6.1: Security Services
- 6.2: Encryptor/Decryptor
- 6.3: Guard/Cross-Domain Service
- 6.4: Network Subsystem
- 6.5: Calibration Service
- 6.6: Nav. Data Service
- 6.7: Time & Frequency Service
- 6.8: Compressor/ Decompressor
- 6.9: Host Platform Interface

6.10: Power

Raytheon The SOSA Modules (Graphical part of SVCV-1)

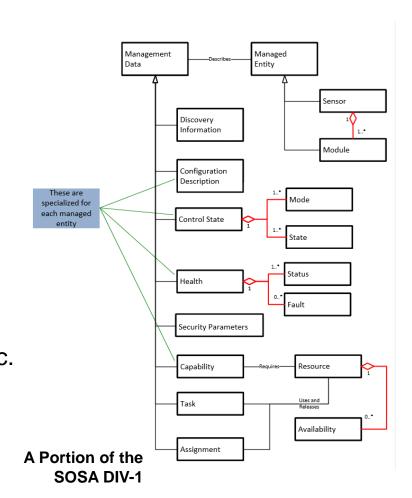
Raytheon Space and Airborne Systems

Documenting the SOSA Modules

Extract from the SvcV-1

1	beamorning, rocus control, and nitering.
2.3 Conditioner- Receiver- Exciter	The Conditioner-Receiver-Exciter may perform receive functions, transmit functions, or both. The receive side may include space-time adaptive processing (STAP), low-noise amplification (with gain control), amplitude limiting, band-pass filtering, frequency translation, application of calibration corrections, channelization, image formation, tagging with metadata, RF signal distribution, data framing, and datacube formation (for hyperspectral). The transmit side may include amplification (with gain control), amplitude limiting, waveform conversion (analog to digital, digital to analog), waveform generation, RF signal distribution, calibration, and adaptation to spectrum use.
3.1 Signal/Object Detector and Extractor	The Signal/Target Detector and Extractor is responsible for detecting electromagnetic signals or physical objects among the noise and other signals and objects in the environment (e.g., clutter or interference). This module extracts a detected signal, detected object, or image chip for downstream processing. Techniques to perform this may include clutter suppression and extraction of scintillation/decorrelation information, interference suppression, the use of constant false alarm rate techniques, coherent and non-coherent integration, image enhancement (including edge detection and sharpening), and employment of gating logic to manage and balance search volume returns with existing object tracks.
3.2 Signal/Object Characterizer	The Signal/Object Characterizer is designed to make measurements on images, signals and physical objects to determine attributes, properties, categories, classes, types, or identification — all with confidence estimates.
3.3 Image Pre- Processor	The Image Pre-Processor module prepares the image for final use and processing. For SAR, this module forms images from sensed RF data. This module also registers images to maps and other images.
3.4 Tracker	The Tracker Module correlates detections and tracks over time, forming new or updated tracks. It is responsible for all track management functions and producing track reports. The core functionality of the Tracker is data association, track initiation, track drop, track update, state and covariance estimation, and split track handling. Estimation of relative position or location (geolocation), when feasible, is also included in this function.
4.1 External Data Ingestor	The External Data Ingestor is responsible for ingesting data from other SOSA sensors, as well as sensors that don't conform to the SOSA Technical Standard (converting from non-Conformant format to Conformant format as needed), and distributes ingested data to other SOSA modules.
4.2 Encoded Data Extractor	The Encoded Data Extractor is applicable to SIGINT, communications, and EW. It is responsible for demodulating and extracting message content (communications and EW), extracting internals (SIGINT and EW) and human language processing (SIGINT).

Extract from the SvcV-4


Module	Mode	Functions (and Prior Modules)	Input (See Table 3 for Definition)	Output (See Table 3 for Definition)
6.5 Calibration Service	ALL	Intake the injected test signal Collect output of either cal test points or main Disable modules not under test Note: Do not preclude the design option to have the data source and processing be internal to the sensor (not needing external injection).	Injected test signal = RF Signal, or Image/Video Stream, or Demodulated Signal Calibration Command Safety Interlock	Electromagnetic Source Command Calibration Result(s)
6.6 Nav Data Service	ALL	Ingest platform/sensor location and orientation (if available) Blend internal and external spatial data (if available) Distribute platform/sensor location and orientation	Navigation Data (external source – option, since could be internally generated) Settings	Navigation Data
6.7 Time & Frequency Service	ALL	Ingest time from external source (if available) Blend internal and external time data Generate time internally (design-dependent) Provide time to internal function (as a timing signal/clock or time message) Provide local oscillator/frequency reference	Time Reference (external source)	Time Reference Frequency Reference
6.8 Compressor/ Decompressor	ALL	Compression Decompression Codec functions [non- specific]	Compression Command Compressed Data Compression Metadata Decompression Decompressed Data Decompression Metadata	Compressed Data Compression Metadata Decompressed Data Decompression Metadata

12/13/2018 38

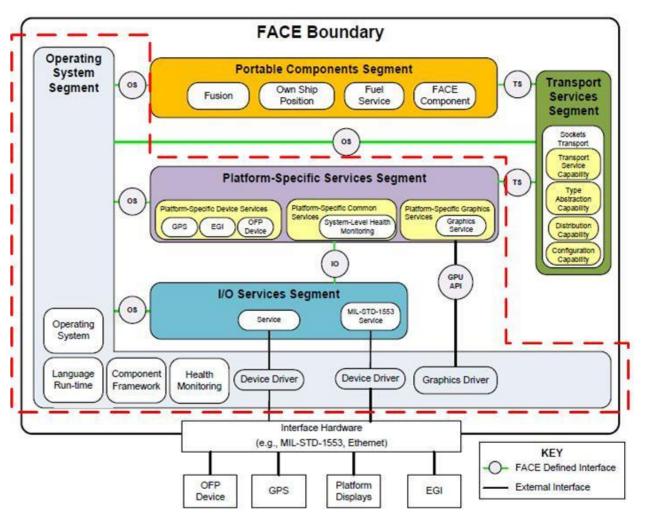
39

Module-to-Module Interfaces: Top-Down Approach

- Data Model defines the information content flowing between SOSA Modules
 - DIV-1 Conceptual Data Model
 - Overall data scheme
 - DIV-2 Logical Data Model
 - What is contained in data elements
 - DIV-3 Physical Data Model
 - How data elements are represented
- Interaction Categories define how the data is exchanged
 – E.g., Pub-Sub, Request-Response, etc.
- Messages define how those data items are conveyed

Raytheon Space and Airborne Systems

Interaction Categories and Data Purpose

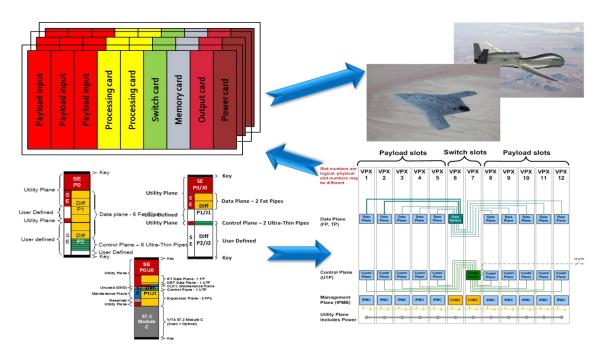

Raytheon Space and Airborne Systems

- Analog signal (e.g., RF, DC voltage)
- Request-Response
- Publish-Subscribe
- Bulk transfer (e.g., digital stream)
- Event Notification
- Secure Request-Response

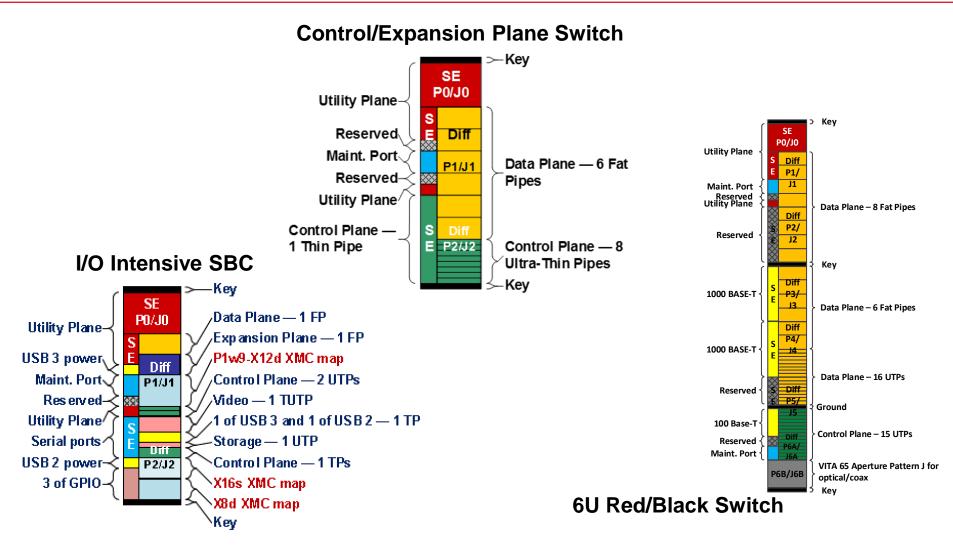
The differentiation of Mission Data and Management Data are reflected in the DIV-1 Conceptual Data Model

- Mission Data
 - Related to the purpose of the system (e.g., sensing, PED, communications)
- Management Data
 - Related to control of the system

Candidate Software Runtime Environment Raytheon Space and Airborne Systems Interface Based on the FACE™ Technical Architecture



SOSA Software Runtime Environment Interface (REI) may consist of SOSA application software interface to host system for language run time and calls to operating system services as defined by FACE OSS interface, SOSA platform specific software and low level I/O as defined by FACE PSSS and IOSS, SOSA operating system as defined by FACE (Posix, ARINC 653, C, C++, Java, and Ada)


Hardware Approach: "Box Level" Specification

Raytheon Space and Airborne Systems

- Applicable to a variety of sensor/avionics platforms
- Hardware Module defined here is an individual card that fits into the box).
- The system is inherently interoperable, compatible with non-Conformant hardware via a set of standard bridge interfaces that are
 - Plug-and-playable
 - Upgradeable (evolvable)
 - Securable
- Compatibility/alignment with
 - VITA standards
 - HOST
 - CMOSS

SOSA Hardware Module Development (Samples)

SOSA (Draft) Technical Standard

Raytheon Space and Airborne Systems

An Open Group Standard
Technical Standard for Sensor Open Systems Architecture (SOSA™) Reference Architecture
SOSA Sensor Open Systems Architecture
THE OPEN GROUP
You have a choice: you can either create your own future, or you can become the victim of a future that someone else creates for you. By seizing the transformation opportunities, you are seizing the opportunity to create your own future.
-VADM Arthur Cebrowski

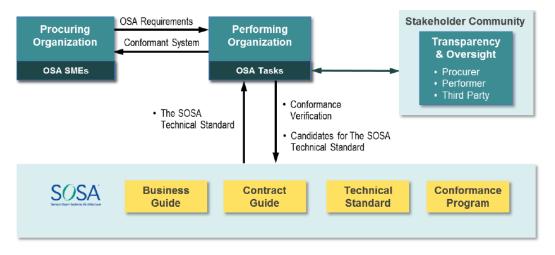
- Documents the SOSA Reference Architecture
- Contains normative and nonnormative content
- Major Sections
 - Architecture Overview
 - Architecture Definition
 - SPSA Technical Standard
 - Appendices
 - StdV-1 (Applicable Standards)
 - AV-2 (Integrated Dictionary)
 - Use Cases
 - DIV-2 (Logical Data Model) and Data Dictionary
 - Host Platform / Sensor Connector Details
 - Slot Profiles
 - Backplane Examples

SOSA Business Guide

Open Group Guide

SOSA™ Business Guide Version 0.8

SOSA Sensor Open Systems Architecture


TH Den GROUP

NOTICE

Varion 0.5 of the SOSATM Dusiness Guide is a draft document intended to make public the current state and direction of development of the business appets of the SOSA approach. We invite your faedback and guidance as soon as possible for your comments the Socialized for the next version of this publication. To provide Seedback please send comments by semall to oppost-admin@opengroup.us.

This Guide is valid through April 30, 2018 only. For information on joining The Open Group SOSATM Consortium, please send email to ogsoss-admin@opengroup.us or visi webithe at www.opengroup.org.tota.

- Open Systems Architecture principles
- Business Model
- Value proposition for C4ISR open systems architecture
- Overview of the SOSA Technical Standard
- Examples of how the acquisition process is affected by OSA
- Guidance for writing solicitations that include SOSA requirements
- Examples of contracting language relevant to the inclusion of OSA

Key Take-Aways

- The SOSA Consortium is developing a unified <u>modular</u>, open reference <u>architecture</u> – and associated business model – for radar, EO/IR, SIGINT, EW, and communications
 - Following MOSA principles, gray box model to protect IP and encourage innovation
 - Structured, top-down approach: Quality Attributes, Architecture Principles, using DoDAF
- Using a consensus-body approach to balance interests of all parties
 - Five Working Groups: Architecture, Business, Electrical/Mechanical, Hardware, and Software
- Products include the SOSA Technical Standard and the Business Guide
 - Initial "Snapshots" have been released for both

How to Reach Us and Learn More

http://opengroup.org/sosa Sensor Open Systems Architectun The Open Group SOSA™ Sensor Integration Consortium enables government and industry to Simplified™ collaboratively develop open standards and best practices to enable, enhance and accelerate the deployment of affordable, capable, interoperable sensor systems. SOSA (Sensor Open Systems Architecture) About 80 8Am Consortium Vision Events Join 80 8A™ Consortium Press Release SOSA Frequently Asked Questions SOSA 2017-2018 Elected I What is the SOSA™ Vision Events I Join the SOSA™ Officers Consortium? Consortium SOSA Members Dr. Steven A. Davidson > Trademark Usage/Copyright > Press Coverage What is the SOSA™ **Director, Product Family Development** > Organizational Structure Consortium? > SOSA Business Guida and Open Systems Architecture > SOSA Technical Standard SOSA[™] Vision > SOSA Terms & Conditions > Members Raytheon Space and Airborne Systems > SOSA Officers SOSA™ Events steve_davidson@raytheon.com Members' Actionable Reminders Join The SOSA™ Consortium 508-361-2827

/2018

47