# Transforming Systems Engineering to Take Advantage of the Digital Revolution



Dr. Ed Kraft Associate Executive Director for Research University of Tennessee Space Institute October 25, 2018

NDIA 21<sup>st</sup> Annual Systems Engineering Conference, Tampa FL



# Current DoD Systems Engineering – Linear, Document Centric, **Positional Process**



Two key findings from GAO reports (06-66, 06-391, 06-110) :

- Contractors not held accountable for achieving desired outcomes, including cost goals, schedule goals, and desired capabilities.
- Programs do not capture, early on, requisite knowledge needed to effectively manage program risks

#### Not incompetence or malfeasance but a systemic problem



INSTITUTE

Figure 3: Average Time 24 DOD Programs Needed to Complete Information Requirements Grouped by Officials Considered Milestone B and C Requirements



GAO-15-192

- Request for Proposa
- Small Business Innovation Research/Small Business Technology Transfe SBIR/STTR

# **DoD Digital Engineering Strategic Guidance (June 2018)**

- Formalize the development, integration, and *use* of models to inform enterprise and program decision making
- Provide an *enduring, authoritative source of truth*
- Incorporate technological innovation to *improve the engineering practice*
- Establish a supporting infrastructure and environment to perform activities, collaborate and communicate across stakeholders
- Transform the culture and work



**Authoritative Truth Sources –** 

the Key to Shifting from a Design-Build-Test-Fix Paradigm to an

Integrate-Analyze-Design-Build-Test-Operate-Learn Systems Engineering Paradigm

# **Authoritative Truth Sources**

Develop, integrate, and curate models to digitally represent the system of interest over its lifecycle

- <u>Authoritative</u> connotes a governance process to assure the pedigree and provenance of the truth source and related models and data over the lifecycle
- <u>Truth</u> connotes a validated, verified source with quantified margins and uncertainties, particularly for epistemic uncertainties
- <u>Digital</u> connotes a calibrated emulator that can be used across all engineering functional domains



#### Digital Surrogate Modeling Commons



Requires a Structured, Disciplined Integration of Model-Based Engineering, Testing, and Uncertainty Quantification



# Using Truth Models to Support Engineering Activities and Decision Making Across the Lifecycle



- The Disruptive Transformation

## Develop, Integrate, and Calibrate an *Enduring* Digital Surrogate Truth Source



# Paradigm Shift in the Role of T&E in Model Validation and Integration Into the Authoritative Truth Source Emulator



#### **Rethinking Model Validation and Data Uncertainty**

- Comparisons with experimental data is insufficient to determine the validity of a model
- Both the model and the experiment contain epistemic and aleatory uncertainties
- Model still in its original format which is not conducive to statistical analysis for decision analytics
- A model can never be completely validated, it can only be invalidated by contrary experimental evidence – to determine if it is invalid for a particular application requires the modeler to quantify margins and uncertainties compared to quantities of interest
- An iterative Bayesian approach to assimilation of the experimental data with model data to form an authoritative digital surrogate is required



Figure 2. F-16C CFD (*Kestrel* and *Cobalt*, full-scale) with LEF = 0 degrees vs. LM Performance Data with LEF = 0 degrees for C<sub>L</sub>, C<sub>D</sub> and C<sub>m</sub>, Mach 0.9.



Dean, John P. et al "High Resolution CFD Simulations of Maneuvering Aircraft Using the CREATE-AV/Kestrel Solver" AIAA Paper 2011-1109, 49<sup>th</sup> Aerospace Sciences Meeting, 4-7 January 2011, Orlando, Florida

Truth Source A single source of fully merged model and empirical data sets with quantified margins and uncertainties available to all stakeholders

Shifts the value of T&E to the production of knowledge required to provide the validated authoritative truth source to manage uncertainty

# **Typical DoD RDT&E Profile for an Air Vehicle**





Requisite Knowledge

# **Definitions of Readiness Levels\***



#### •Technology Readiness Level (TRL)

maturity of a particular technology – cannot be higher than the TRL level for the least mature component

#### •Manufacturing Readiness Level (MRL)

current level of manufacturing maturity, identifies maturity shortfalls and associated risks

#### Integration Readiness Level (IRL)

*integration readiness of any two TRLassessed technologies* 

#### •System Readiness Level (SRL)

normalized matrix of pair-wise comparisons of TRLs and IRLs of a system

### $[SRL]_{nx1} = [IRL]_{nxn} \times [TRL]_{nx1}$

| LEVEL | TRL Definition                                                                              | MRL Definition                                                                                                                                                                                                             | IRL Definition                                                                                                                       | SRL Definition                          | SRL Value    |
|-------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|
| 1     | Basic principles observed and reported.                                                     | Basic manufacturing implications identified.                                                                                                                                                                               | An interface between technologies<br>has been identified with sufficient<br>detail to allow characterization of<br>the relationship. | Concept Refinement                      | 0.10 to 0.39 |
| 2     | Technology concept and/or application formulated.                                           | Manufacturing concepts<br>identified.                                                                                                                                                                                      | There is some level of specificity to<br>characterize the interaction between<br>technologies through their interface.               |                                         |              |
| 3     | Analytical and experimental<br>critical function and/or<br>characteristic proof of concept. | Manufacturing proof-of-concept<br>developed.                                                                                                                                                                               | There is compatibility between<br>technologies to orderly and<br>efficiently integrate and interact.                                 |                                         |              |
| 4     | Component and/or breadboard validation in laboratory environment.                           | Capability to produce the technology in a laboratory environment.                                                                                                                                                          | There is sufficient detail in the<br>quality and assurance of the<br>integration between technologies.                               |                                         |              |
| 5     | Component and/or breadboard<br>validation in relevant<br>environment.                       | Capability to produce prototype<br>components in a production<br>relevant environment.                                                                                                                                     | There is sufficient control between<br>technologies necessary to establish,<br>manage, and terminate the<br>integration.             | Technology<br>Development               | 0.40 to 0.59 |
| 6     | System/subsystem model<br>demonstration in relevant<br>environment.                         | Capability to produce a prototype<br>system or subsystem in a<br>production relevant environment.                                                                                                                          | The integrating technologies can<br>accept, translate, and structure<br>information for its intended<br>application.                 |                                         |              |
| 7     | System prototype demonstration<br>in relevant environment.                                  | Capability to produce systems,<br>subsystems, or components in a<br>production representative<br>environment (MRL 7).<br>Pilot line capability<br>demonstrated; ready to begin<br>low-rate, initial production (MRL<br>8). | The integration of technologies has<br>been verified and validated with<br>sufficient detail to be actionable.                       | System Development<br>and Demonstration | 0.60 to 0.79 |
| 8     | Actual system completed and<br>qualified through test and<br>demonstration.                 | Low-rate production<br>demonstrated; capability in place<br>to begin full-rate production<br>(MRL 9).                                                                                                                      | Actual integration completed and<br>mission qualified through test and<br>demonstration in the system<br>environment.                |                                         |              |
| 9     | Actual system proven through successful mission operations.                                 | Full-rate production<br>demonstrated and lean production<br>practices in place (MRL 10).                                                                                                                                   | Integration is mission proven<br>through successful mission<br>operations.                                                           | Production<br>Operations and            | 0.80 to 0.89 |
|       |                                                                                             | practices in place (WIKL 10).                                                                                                                                                                                              | operations.                                                                                                                          | Support                                 | 0.00 10 1.00 |

# **Systems Engineering Paradigm Shift**

**NASA Systems Engineering Process** 

|                   | Т |  |  |  |  |  |  |
|-------------------|---|--|--|--|--|--|--|
| SPACE<br>NSTITUTE |   |  |  |  |  |  |  |

|              | Phase           |                                                                  | Purpose                                                                                                                                                                                                                                                                                                                                     | Typical Outcomes                                                                                                                        |                                                                                                                                                 |
|--------------|-----------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Pre-Formulation | Pre-Phase A<br>Concept<br>Studies                                | To produce a broad spectrum of ideas and alternatives<br>for missions from which new programs/projects can be<br>selected. Determine feasibility of desired system, develop<br>mission concepts, draft system-level requirements, assess<br>performance, cost, and schedule feasibility; identify<br>potential technology needs, and scope. | Feasible system concepts<br>in the form of simulations,<br>analysis, study reports,<br>models, and mock-ups                             | Integrate<br>models at<br>surrogate<br>data; dep<br>analysis; j<br>system lev<br>Analyze –<br>design va<br>subsystem<br>costs; per<br>and uncer |
| Design       | Formulation     | Phase A<br>Concept and<br>Technology<br>Development              | To determine the feasibility and desirability of a suggested<br>new system and establish an initial baseline compatibility<br>with NASA's strategic plans. Develop final mission concept,<br>system-level requirements, needed system technology<br>developments, and program/project technical management<br>plans.                        | System concept definition<br>in the form of simulations,<br>analysis, engineering models<br>and mock-ups, and trade<br>study definition |                                                                                                                                                 |
|              |                 | Phase B<br>Preliminary<br>Design and<br>Technology<br>Completion | To define the project in enough detail to establish an initial baseline capable of meeting mission needs. Develop system structure end product (and enabling product) requirements and generate a preliminary design for each system structure end product.                                                                                 | End products in the form of<br>mock-ups, trade study results,<br>specification and interface<br>documents, and prototypes               | <i>Design</i> – o<br>most sens<br>surrogate<br>to design                                                                                        |
| Build        |                 | Phase C<br>Final Design<br>and Fabrication                       | To complete the detailed design of the system (and its<br>associated subsystems, including its operations systems),<br>fabricate hardware, and code software. Generate final<br>designs for each system structure end product.                                                                                                              | End product detailed designs,<br>end product component<br>fabrication, and software<br>development                                      | <i>Build</i> – us<br>variations<br>developm                                                                                                     |
| Test         | 5               | Phase D<br>System                                                | o assemble and integrate the system hardware, software, and humans), and anwhile developing confidence that it                                                                                                                                                                                                                              | Operations-ready system<br>end product with supporting                                                                                  | <i>Test</i> –opti<br>validate d                                                                                                                 |
| Fix          | lementation     | Assembly,<br>Integration and<br>Test, Launch                     | is able to meet the system requirements. Launch and<br>propare for operations. Perform system end product<br>implementation, assembly, integration and test, and<br>transition to use.                                                                                                                                                      | related enabling products                                                                                                               | and mitig<br>paramete<br>Operate –                                                                                                              |
| First time 🖌 | e<br>E          | Phase E<br>Operations and                                        | To conduct the mission and meet the initially identified<br>need and maintain support for that need. Implement the                                                                                                                                                                                                                          | Desired system                                                                                                                          | knowledg                                                                                                                                        |
| "Integrate"  |                 | Sustainment                                                      | mission operations plan.                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         | sustainme<br>control                                                                                                                            |
| appears in   |                 | Phase F<br>Closeout                                              | To implement the systems decommissioning/disposal plan<br>developed in Phase E and perform analyses of the returned                                                                                                                                                                                                                         | Product closeout                                                                                                                        | Learn – A                                                                                                                                       |
| purpose      |                 |                                                                  | data and any returned samples.                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | surrogate                                                                                                                                       |

#### Digital Engineering Paradigm

**Integrate** – develop and apply digital surrogate truth source models at the component, subsystem, system level; validate surrogate models with higher fidelity models and empirical data; deploy subsystem surrogate models in an MDO analysis; perform trade and cost studies at the integrated system level

Analyze – define subsystem and system level sensitivity to design variables; address uncertainty propagation across subsystems and impact on total system performance and costs; perform a probabilistic analysis to quantify margins and uncertainties on system meeting performance reqts. *Design* – deploy design for variance reduction strategy for most sensitive design variables using updated digital surrogates; use mfg and sustainment digital surrogate models to design for manufacturing and sustainment *Build* – use surrogate truth source models to account for

variations in mfg and assembly tolerances, precursor to the development of a digital twin.

*Test* –optimize tests to provide required knowledge to validate digital surrogate truth sources; use test to monitor and mitigate uncertainties in key technical performance parameters as a measure of progress toward requirements *Operate* – deploy a digital twin to monitor health, gain more knowledge about system performance, project optimum sustainment, and/or provide a reference model for adaptive control

Learn – Accumulate knowledge and implement into digital surrogate models to improve the next system's performance

#### Not in lieu of current SE processes but as an enhancement

# Quantifying and Managing Key Measures at Critical Decision Points



# **Decision Analytics – Moving to Digital Critical Decision Points**

Do

All Stakeholders have a continuous digital view of progress toward meeting requirements, potential impacts on the program; can iterate emulator sensitivities to assess *"what if" for different outcomes* 



Near real-time discovery of notable states or state changes allowing program actions before a staged critical decision event can take place.

**Mission Objectives** Apply Bayesian Belief Network to

• Quantify risks in achieving

evaluate potential scenarios to quantify probabilities of outcome and consequences Identify the Best Value option

 Perform a probabilistic analysis to quantify margins and uncertainties for vital performance measures **Think** • Assess the impact of margins and uncertainties on achieving military utility and affordability

 Assess the state of the system comparing calibrated Truth Source Models with required TPMs /QOIs • Quantify TRL, MRL, IRL, SRL See • Optimize next steps to reduce uncertainties through additional modeling, testing, or identify necessity to redesign





**Bound Response** Objective CDF Threshold Range





# Summary



The Digital Engineering strategy will enable a significant paradigm shift in Systems Engineering and T&E toward

- Early integrated analysis of a system using authoritative digital surrogates – better knowledge earlier
- Methodology for designing / executing tests to develop, calibrate, and curate the authoritative truth source emulators
- Adopting uncertainty quantification and risk mitigation for key Technical Performance Measures as the value proposition for T&E
- Enabling better informed Digital Critical Decisions by quantifying system performance, risk, and analyzing best courses of action

SE, MBE and T&E with UQ Provides Value to Digital Engineering as a Source of Knowledge for Risk Identification and Management