21310 - Verifying Software Control Categories (SCCs) Using Quantitative Fault Tree Analyses (FTAs)

Robert E. Smith, CSP Booz Allen Hamilton 2018 NDIA 21st SE Conference Tampa, FL 25 October 2018

Agenda

- Introduction
- Background / Hypothesis
- Assumptions and Decomposing SCC Definitions
- Fault Tree Examples
- Case Study Verification
- Results
- Conclusion and Recommendations
- References

Disclaimer

 Any views or opinions presented in this presentation are solely those of the author/presenter and do not represent those of Booz Allen Hamilton nor the U.S. Department of Defense (DoD)

Introduction	Background	Assumptions / SCCs	FTA Examples	Case Study	Results	Conclusion	References

Introduction

- Proposes an approach to use quantitative Fault Tree Analyses (FTAs) to determine and/or verify the Software Control Category (SCC) assignments in accordance with MIL-STD-882E
- Evaluates and decomposes SCC definitions from MIL-STD-882E
- Uses quantitative FTAs and sets software failures to 1 (always fails) to assess the impact of the top event failure probability to help determine the proper alignment of the SCC assessment to the SCC definitions

Goal – Evaluating the feasibility of using quantitative FTAs to verify SCCs and SwCIs

Introduction	Background	Assumptions / SCCs	FTA Examples	Case Study	Results	Conclusion	References
--------------	------------	--------------------	--------------	------------	---------	------------	------------

Background

- Software Failure Probability
- Extremely difficult to determine -- <u>this paper does not attempt to research</u> <u>this topic</u>
 - MIL-STD-882E "Determining the probability of failure of a single software function is difficult at best and cannot be based on historical data. Software is generally application-specific and reliability parameters associated with it cannot be estimated in the same manner as hardware. Therefore, another approach shall be used for the assessment of software's contributions to system risk..."
 - Joint Software Systems Safety Engineering Handbook (JSSSEH), Section 4.2.1.8.2 – "Traditionally, and for the purpose of being conservative, software errors in fault trees must be set to a value of one (1) where no supporting analysis or assurance rationale is provided."
- For this reason, typically take a conservative approach to assessing software failures in FTAs as "always failure" or failure probability set to 1

Background – Software Control Categories (MIL-STD-882E, Table IV)

• Five SCC Levels:

Background

- 1 Autonomous (AT)
- 2 Semi- Autonomous (SAT)
- 3 Redundant Fault Tolerant (RFT)
- 4 Influential
- 5 No Safety (NSI)

TABLE IV. Software control categories

	SOFTWARE CONTROL CATEGORIES				
Level	Name	Description			
1	Autonomous (AT)	 Software functionality that exercises autonomous control authority over potentially safety- significant hardware systems, subsystems, or components without the possibility of predetermined safe detection and intervention by a control entity to preclude the occurrence of a mishap or hazard. (This definition includes complex system/software functionality with multiple subsystems, interacting parallel processors, multiple interfaces, and safety-critical functions that are time critical.) 			
2	Semi- Autonomous (SAT)	 Software functionality that exercises control authority over potentially safety-significant hardware systems, subsystems, or components, allowing time for predetermined safe detection and intervention by independent safety mechanisms to mitigate or control the mishap or hazard. (This definition includes the control of moderately complex systems/software functionality, no parallel processing, or few interfaces, but other safety systems/mechanisms can partially mitigate. System and software fault detection and annunciation notifies the control entity of the need for required safety actions.) Software item that displays safety-significant information requiring immediate operator entity to execute a predetermined action for mitigation or control over a mishap or hazard. Software exception, failure, fault, or delay will allow, or fail to prevent, mishap occurrence. (This definition assumes that the safety-critical display information may be time-critical, but the time available does not exceed the time required for adequate control entity response and hazard control.) 			
3	Redundant Fault Tolerant (RFT)	 Software functionality that issues commands over safety-significant hardware systems, subsystems, or components requiring a control entity to complete the command function. The system detection and functional reaction includes redundant, independent fault tolerant mechanisms for each defined hazardous condition. (This definition assumes that there is adequate fault detection, annunciation, tolerance, and system recovery to prevent the hazard occurrence if software fails, malfunctions, or degrades. There are redundant sources of safety-significant information, and mitigating functionality can respond within any time-critical period.) Software that generates information of a safety-critical nature used to make critical decisions. The system includes several redundant, independent fault tolerant mechanisms for each hazardous condition, detection and display. 			
4	Influential	 Software generates information of a safety-related nature used to make decisions by the operator, but does not require operator action to avoid a mishap. 			
5	No Safety Impact (NSI)	 Software functionality that does not possess command or control authority over safety- significant hardware systems, subsystems, or components and does not provide safety- significant information. Software does not provide safety-significant or time sensitive data or information that requires control entity interaction. Software does not transport or resolve communication of safety-significant or time sensitive data. 			

Background

Background – SCC and Software Criticality Indices (SwCIs) (MIL-STD-882E, Table V)

- Five SwCIs Levels for performing Level of Rigor (LOR)
- SwCI 1 Analysis of requirements, architecture, design and code; conduct indepth safety-specific testing
- SwCI 2 Analysis of requirements, architecture, design; conduct in-depth safetyspecific testing
- SwCI 3 Analysis of requirements and architecture; conduct in-depth safety-specific testing
- -SwCl 4 Conduct safety-specific testing
- SwCl 5 Not Safety

TABLE V. Software safety criticality matrix

Conclusion

SOFTWARE SAFETY CRITICALITY MATRIX							
		SEVERITY	CATEGORY				
SOFTWARE CONTROL CATEGORY	Catastrophic (1)	Negligible (4)					
1	SwCI 1	SwCI 1	SwCI 3	SwCI 4			
2	SwCI 1	SwCI 2	SwCI 3	SwCI 4			
3	SwCI 2	SwCI 3	SwCI 4	SwCI 4			
4	SwCI 3	SwCI 4	SwCI 4	SwCI 4			
5	SwCI 5	SwCI 5	SwCI 5	SwCI 5			

SwCI	Level of Rigor Tasks
SwCI 1	Program shall perform analysis of requirements, architecture, design, and code; and conduct in-depth safety- specific testing.
SwCl 2	Program shall perform analysis of requirements, architecture, and design; and conduct in-depth safety-specific testing.
SwCI 3	Program shall perform analysis of requirements and architecture; and conduct in-depth safety-specific testing.
SwCl 4	Program shall conduct safety-specific testing.
SwCI 5	Once assessed by safety engineering as Not Safety, then no safety specific analysis or verification is required.

NOTE: Consult the Joint Software Systems Safety Engineering Handbook and AOP 52 for additional guidance on how to conduct required software analyses.

Background

Conclusion

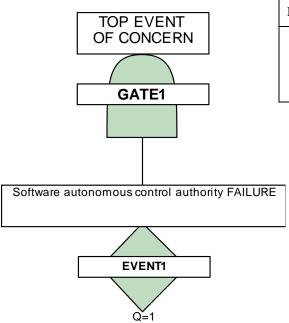
Hypothesis – With Software Failures set to 1

- If the top event failure probability is 1, this function is likely <u>SCC 1 -</u> <u>Autonomous (AT)</u>
- If the top event failure probability is 1e-3 or less, then there are still hardware and/or operator influences on the function, so the SCC is likely <u>SCC 2 - Semi-</u> <u>Autonomous (SAT)</u> or lower
- If the top event failure probability is a very small number [less than 1e-6], then the SCC is likely <u>3 - Redundant Fault Tolerant (RFT); 4 - Influential, or</u> <u>even 5 - No Safety Impact (NSI)</u>

Introduction	Background	Assumptions / SCCs	FTA Examples	Case Study	Results	Conclusion	References
--------------	------------	--------------------	--------------	------------	---------	------------	------------

Overall Assumptions

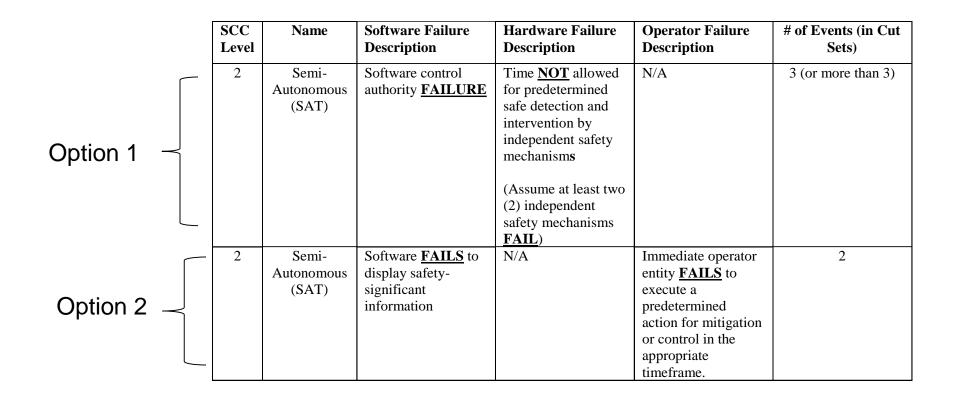
- Nominal failure probability values
- Hardware failures = 1e-4
- Operator errors = 1e-3
- DOES NOT assess or construct safety interlocks in the FTA examples that are considered "<u>software interlocks</u>."
- JSSSEH states "safety interlocks can be either hardware or software oriented. As an example, a hardware safety interlock would be a key switch that controls a safe/arm switch. Software interlocks generally require the presence of two or more software signals from independent sources to implement a particular function. Examples of software interlocks are checks and flags, firewalls, come-from programming techniques, and bit combinations."
- Modeling software interlocks in quantitative FTAs would be another excellent paper topic for a future conference, but are excluded from this presentation


SCC Assumptions

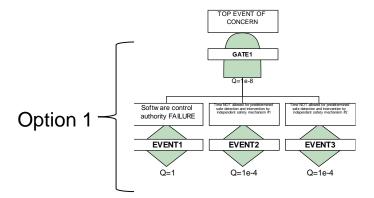
- Following slides and tables breakdown each SCC definition (SCCs 1-5) by software failure description, hardware failure description, and operator failure description
 - This will form the basis for the Fault Tree model for each SCC level
 - If the column contains "Not Applicable (N/A)" then this failure mode is assumed not present in the SCC definition
 - The last column includes the number of events included in the cut set
 - Text in <u>BOLD AND UNDERLINED</u> indicate added descriptors to convert the SCC definitions into failure descriptions to model as failure events in the sample FTAs

References

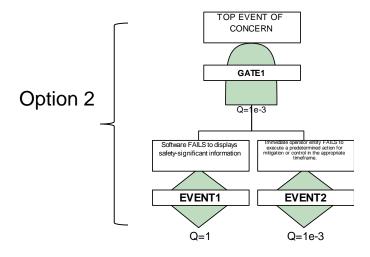
FTA Examples – SCC 1


Background

SCC Level	Name	Software Failure Description	Hardware Failure Description	Operator Failure Description	# of Events (in Cut Sets)
1	Autonomous	Software	N/A – no possibility	N/A - no possibility	1
	(AT)	autonomous control	of predetermined	of predetermined	
		authority FAILURE	safe detection and	safe detection and	
			intervention by a	intervention by a	
			control entity	control entity	


EVENT1 - Software Failure Probability (Q – Unavailability)	GATE1 – Top Event Probability (Q – Unavailability)	SCC Determination Trend	SCC Rationale
1 (always fail)	1 (always fail)	1	Equal failure probability
0.10	0.10		values show Top Event is
1e-2	1e-2		directly dependent on the
1e-3	1e-3		Software Functionality
1e-6	1e-6		
1e-9	1e-9		

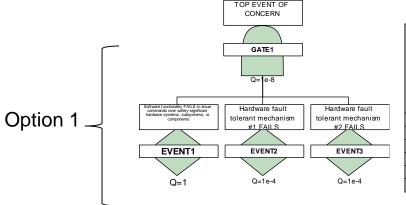
FTA Examples – SCC 2 – Two options



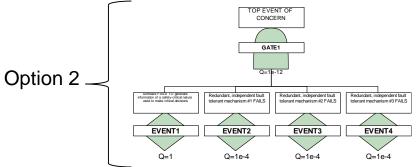
Introduction

FTA Examples – SCC 2 – Two options (cont)

EVENT1 - Software Failure Probability	EVENT2 - Mechanism #1 Failure Probability	EVENT3 - Mechanism #2 Failure Probability	GATE1 - Top Event Probability	SCC Determination Trend	SCC Rationale
1 (always fail)	1e-4	1e-4	1e-8	2	Top event failure
0.10	1e-4	1e-4	1e-9		probability is the
1e-2	1e-4	1e-4	1e-10		product of the
1e-3	1e-4	1e-4	1e-11		two (2)
1e-6	1e-4	1e-4	1e-14		mechanism
1e-9	1e-4	1e-4	1e-17		failures


EVENT1 - Software Failure Probability	EVENT2 - Operator Failure Probability	GATE1 - Top Event Probability	SCC Determination Trend	SCC Rationale
1 (always fail)	1e-3	1e-3	2	Top event failure
0.10	1e-3	1e-4		probability is the
1e-2	1e-3	1e-5		failure
1e-3	1e-3	1e-6		probability of
1e-6	1e-3	1e-9		operator failure
1e-9	1e-3	1e-12		

Conclusion


FTA Examples – SCC 3 – Two options

	SCC Level	Name	Software Failure Description	Hardware Failure Description	Operator Failure Description	# of Events (in Cut Sets)
Option 1	3	Redundant Fault Tolerant (RFT)	Software functionality FAILS to issue commands over safety-significant hardware systems, subsystems, or components	At least two (2) hardware fault tolerant mechanisms <u>FAIL</u>	Control entity INADVERTENTLY completes the command function. (Does this count as a failure in the FTA if the software fails to issue appropriate commands?)	3 or more
Option 2 -	3	Redundant Fault Tolerant (RFT)	Software FAILS TO generate information of a safety-critical nature used to make critical decisions	Several (at least three (3)) redundant, independent fault tolerant mechanisms FAIL for each hazardous condition, detection and display.		4 or more

FTA Examples – SCC 3 – Two options (cont)

EVENT1 - Software Failure Probability	EVENT2 – Hardware Fault Tolerant Mechanism #1 Failure Probability	EVENT3 - Hardware Fault Tolerant Mechanism #2 Failure Probability	GATE1 - Top Event Probability	SCC Determination Trend	SCC Rationale
1 (always fail)	1e-4	1e-4	1e-8	3	Top event failure
0.10	1e-4	1e-4	1e-9		probability is the
1e-2	1e-4	1e-4	1e-10		product of the
1e-3	1e-4	1e-4	1e-11		two (2)
1e-6	1e-4	1e-4	1e-14		mechanism
1e-9	1e-4	1e-4	1e-17		failures

EVENT1 - Software Failure Probability	EVENT2 – Hardware Mechanism #1 Failure Probability	EVENT3 - Hardware Mechanism #2 Failure Probability	EVENT4 - Hardware Mechanism #3 Failure Probability	GATE1 - Top Event Probability	SCC Determination Trend	SCC Rationale
1 (always	1e-4	1e-4	1e-4	1e-12	3	Top event
fail)						failure
0.10	1e-4	1e-4	1e-4	1e-13		probability
1e-2	1e-4	1e-4	1e-4	1e-14		is the
1e-3	1e-4	1e-4	1e-4	1e-15		product of
1e-6	1e-4	1e-4	1e-4	1e-18		the three
1e-9	1e-4	1e-4	1e-4	1e-21		(3)
						mechanism
						failures

FTA Examples – SCC 4

Background

- SCC 4 definition implies:
- 1) there is no mishap (or FTA top event) if this safety failure occurs and
- 2) safety-related nature is related to a Marginal / Negligible severity.
- Therefore, there is no need to develop a FTA since there is no mishap / top event if software failure occurs.

SCC	Name	Software Failure	Hardware Failure	Operator Failure	# of Events
Level		Description	Description	Description	(in Cut Sets)
4	Influential	Software FAILS to generate information of a safety-related nature used to make decisions by the operator, but does not require operator action to avoid a mishap.	N/A	N/A	No Mishap / Top Event if software failure occurs

FTA Examples – SCC 5

 Based on the SCC 5 definition:

Background

 No need to develop a FTA since software functionality is not related to any safety significant function and there is no mishap / top event if software failure occurs

SCC	Name	Software Failure	Hardware Failure	Operator Failure	# of Events (in Cut
Level		Description	Description	Description	Sets)
5	No Safety Impact (NSI)	N/A	N/A	N/A	Software functionality <u>NOT</u> related to any safety significant function. No Mishap / Top Event if software failure occurs

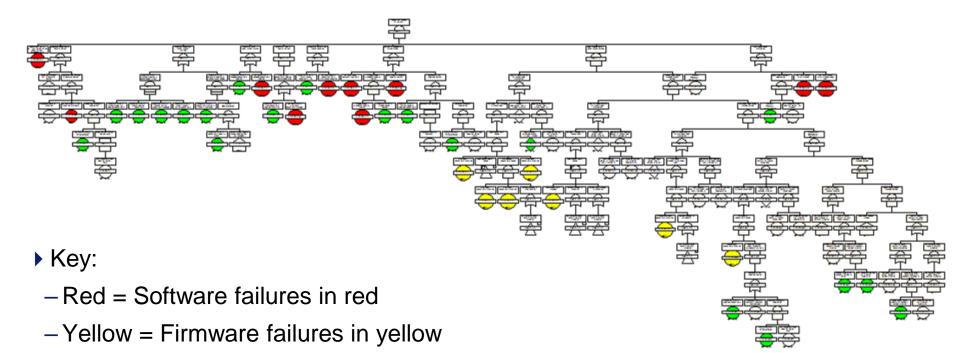
Initial Results

Background

- While the sensitivity analyses did not expose any revelations, they did provide the following range of failure probabilities
- Probability ranges could be used as a "rule of thumb" during SCC assessment when software failure probabilities are set to 1

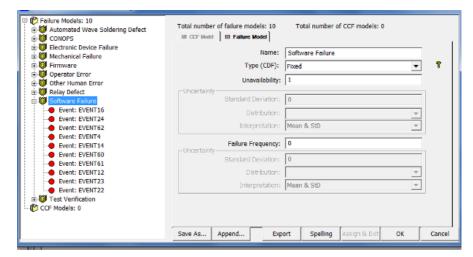
Software Failure Probability	GATE1 - Top Event Probability	SCC Determination Trend
	Range	
1 (always fail)	1	1 – Autonomous (AT)
1 (always fail)	1e-3 to 1	(further SCC determination needed
		to decide if SCC 1 or SCC 2)
1 (always fail)	1e-3 to 1e-8	2 - Semi-Autonomous (SAT)
1 (always fail)	1e-8 to 1e-12	3 - Redundant Fault Tolerant (RFT)
1 (always fail)	N/A – no mishap/top event	4 – Influential (I)
N/A – no software functionality	N/A – no mishap/top event	5 - No Safety Impact (NSI)

Background


Conclusion

Case Study to Verify Initial FTA Examples

- Using a more realistic model, a sample fault tree of a fictitious launching system with a variety of fault events
- Top event is "Inadvertent Launch"


Case Study to Verify Initial FTA Examples (cont)

- Green = Operator failures in green
- Default White = Other failures (e.g., mechanical failures)

Case Study to Verify Initial FTA Examples (cont)

- For this sample fault tree, a Fault Tree application is used including the use of a failure model library to easily and quickly change failure probabilities to perform sensitivity analyses of software failures
- All other failure probabilities for the various failure models are kept at their assumed failure levels
 - -Hardware failures = 1e-4
 - -Operator errors = 1e-3

Case Study Results

Cut Set Report (partial)

Conclusion

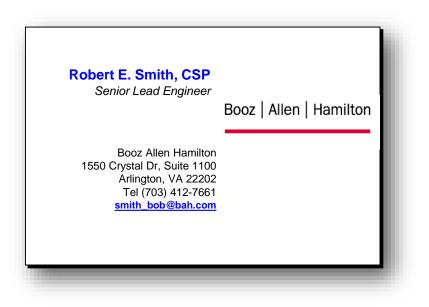
Software Failure	Firmware Failure	Top Event Probability – Inadvertent Launch	SCC Determination Trend	SCC Rationale	Gate Name GATE1	No 1	Cut Set EVENT8 : EVENT12 : EVENT4) : EVENT14 (EVENT22 : EVENT32	Set Unavailability 1e-6
1 (always fail)	1	1.01e-6	2-SAT	Top Event probability is between 1e-3 to 1e-8 as listed in Table on Slide 17			::EVENT25::EVENT26 ::EVENT27::EVENT28 ::EVENT36::(EVENT42	3
0.10	1	3.77e-12	3-RFT	Top Event probability is close to 1e-13 as listed in Option 2 Table on Slide 14 when Software Failure is 0.1.	GATE1	2	:(EVENT44):(EVENT67 :(EVENT82) EVENT8 ::EVENT12 ::EVENT14 ::EVENT14 ::EVENT24 ::EVENT32	
1e-2	1	5.18e-18	3-RFT	Top Event probability is close to 1e-14 as listed in Option 2 Table on Slide 14 when Software Failure is 1e-2.			::EVENT25 ::EVENT26 ::EVENT27 ::EVENT26 ::EVENT36 ::EVENT42 ::EVENT44 ::EVENT60 ::EVENT62	8
1e-3	1	4.87e-23	3-RFT	Top Event probability is close to 1e-15 as listed in Option 2 Table on Slide 14 when Software Failure is 1e-3.	GATE1	3	EVENT8 ::EVENT12 ::EVENT14 ::EVENT16 ::EVENT22 ::EVENT25 ::EVENT25 ::EVENT26 ::EVENT27 ::EVENT26	5
1e-6	1	1.22e-29	3-RFT	Top Event probability is close to 1e-18 as listed in Option 2 Table on Slide 14 when Software Failure is 1e-6.			::EVENT36 ::EVENT42 ::EVENT44 ::EVENT60 ::EVENT62	
1e-9	1	1.01e-32	3-RFT	Top Event probability is close to 1e-21 as listed in Option 2 Table on Slide 14 when Software Failure is 1e-9.				

Results – SCC assessed as 2-SAT (conservative assessment); additional verification could be provided by the Cut Set Report, Functional Hazard Analysis (FHA) and System Safety Working Group (SSWG)

- Quantitative FTAs can be used to verify the SCC level
- Rough approximation of the top event failure probability ranges to determine the SCC when software failure probabilities are set to 1
- Further refinement may be necessary as additional case studies are performed for more complex and realistic fault tree models
- Safety interlocks that are software interlocks (e.g., checks and flags, firewalls, bit combinations) are excluded from this paper - Modeling software interlocks could impact the conclusions of this paper
- Cut set reports can also be used to assess the combinations of failures required to cause the top event

Introduction	Background	Assumptions / SCCs	FTA Examples	Case Study	Results	Conclusion	References

Recommendations


- If it is desired to reduce the SCC, the System Safety Practitioner should closely exam the results of FTAs and cut set reports
- Consider design enhancements that would add additional hardware controls, operator verification, and/or design features into the system functionality to reduce software autonomy
- Lowering the SCC could reduce the SwCI and LOR tasking required, which may save program resources when it comes to performing complex LOR tasks, such as code analysis
- Understood that in some cases, operational and design requirements will dictate that software functionality for safety critical operations can only be autonomous
- Inserting additional safety interlocks or operator interventions may not be feasible

Introduction	Background	Assumptions / SCCs	FTA Examples	Case Study	Results	Conclusion	References
							-

References

- MIL-STD-882E, "Department of Defense Standard Practice System Safety," May 11, 2012.
- Department of Defense (DoD) Joint Software Systems Safety Engineering Handbook (JSSSEH), August 27, 2010.

Questions?

