MSIAC Workshop 2018:
Improved Explosives and Munitions Risk Management

IESS, San Diego, 6-9 August 2018

Martijn van der Voort
TSO - Munitions Transport and Storage Safety
+32 2 707 5426
m.vandervoort@msiac.nato.int
- Unclassified workshop open at no cost to government, industry and academia representatives from all MSIAC member nations
- Limit of 70 participants almost reached
IEMRM workshop features:
- Sun: Welcome reception
- Mon: Plenary session
- Tue – Thu: Parallel sessions (focus areas) and plenary sessions (back briefs)
- Tue: Workshop dinner
- Wed: Visit to GDELS
- Fri: Conclusions

IEMRM preparations:
- 15 MSIAC papers and/or presentations
- 34 papers and/or presentations from participants
- MSIAC Sharefile repository with papers and references
- Webinar
- Site survey
Improved Explosives and Munitions Risk Management

This workshop seeks to exploit an improved understanding of munitions vulnerability and consequences to deliver improvements in munitions risk management.
Objectives

- **Support** the IM and HC harmonization initiative
 - Identify how response descriptors can be introduced in HC testing
 - Identify whether there’s a need for a revised definition of Hazard Divisions (HD) and Storage sub Divisions (SsD)

- **Develop** improved methods for explosives and munitions risk management
 - Exploit results from small- and full-scale testing
 - Manage risk with sufficient detail and granularity
 - Realize benefits of IM
 - Efficiently manage munitions presenting the greatest hazard

- **Recommend** improved methods for explosives and munitions safety risk standards
 - Ensuring they reflect the changing nature of the munitions stockpile
 - Balancing complexity versus ease of user application
Workshop structure

Mon
- Registration Welcome and Plenary Session

Tue
- 1A Improved HC and IM Assessment
- 1B Applicability of HD Assignment to Storage Part 1
- 2A Internal Blast and Debris
- 2B Fragmentation

Wed
- 1A Improved Criteria for HD Assignment Part 2
- 1B Applicability of HD Assignment to Storage Part 2
- 2C External Blast
- 2D Thermal Effects

Thu
- Implementation of IEMRM
- 3A Deployed Missions and Operations
- 3B Storage in Home Country
- 2E Probability of Event

Fri
- Conclusions and Way Forward

1. Improved HC and IM Assessment
2. Improved Consequence and Risk Analysis
3. Implementation of IEMRM
Workshop structure

Mon
- REGISTRATION WELCOME AND PLENARY SESSION
- 1A IMPROVED CRITERIA FOR HC and IM Assignment Part 1
- 1B APPLICABILITY OF HD ASSIGNMENT TO STORAGE Part 1
- 2A INTERNAL BLAST AND DEBRIS
- 2B FRAGMENTATION

Tue
- 1A IMPROVED CRITERIA FOR HD ASSIGNMENT PART 1
- 1B APPLICABILITY OF HD ASSIGNMENT TO STORAGE PART 1
- 2A INTERNAL BLAST AND DEBRIS
- 2B FRAGMENTATION

Wed
- 1A IMPROVED CRITERIA FOR HD ASSIGNMENT PART 2
- 1B APPLICABILITY OF HD ASSIGNMENT TO STORAGE PART 2
- 2C EXTERNAL BLAST
- 2D THERMAL EFFECTS

Thu
- 3A DEPLOYED MISSIONS AND OPERATIONS
- 3B STORAGE IN HOME COUNTRY
- 2E PROBABILITY OF EVENT

Fri
- CONCLUSIONS AND WAY FORWARD
Current HC system loosely defines explosive effects

Differences in Hazard Divisions (HD) between nations possible

Q: Can IM test responses be introduced into HC assessment* and what would be the assessment criteria?

*this was already done for test series 7 used to classify HD1.6
Improved criteria for HD assignment

Support for Munitions Safety

<table>
<thead>
<tr>
<th>Response Level Type</th>
<th>Energetic Materials (EM)</th>
<th>Case</th>
<th>Blast</th>
<th>Fragment or EM projection</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I (detonation)</td>
<td>Prompt consumption of all EM once the reaction starts</td>
<td>(P) Rapid plastic deformation of the metal casing contacting the EM with extensive high shear rate fragmentation</td>
<td>(P) Shock wave with magnitude & timescale — to a calculated value or measured value from a calibration test</td>
<td>Perforation, fragmentation and/or plastic deformation of witness plates</td>
<td>Ground craters of a size corresponding to the amount of EM in the munition</td>
</tr>
<tr>
<td>Type II (partial detonation)</td>
<td>(P) Rapid plastic deformation of some, but not all, of the metal casing contacting the EM with extensive high shear rate fragmentation</td>
<td>(P) Shock wave with magnitude & timescale < than that of a calculated value or measured value from a calibration test</td>
<td>Perforation, plastic deformation and/or fragmentation of adjacent metal plates. Scattered burned or unburned EM.</td>
<td>Ground craters of a size corresponding to the amount of EM that detonated.</td>
<td></td>
</tr>
<tr>
<td>Type III (explosion)</td>
<td>(P) Rapid combustion of some or all of the EM once the munition reaction starts</td>
<td>(P) Extensive fracture of metal casings with no evidence of high shear rate fragmentation resulting in larger and fewer fragments than observed from purposely detonated calibration tests</td>
<td>Observation or measurement of a pressure wave throughout the test arena with peak magnitude << than and significantly longer duration that of a measured value from a calibration test</td>
<td>Witness plate damage. Significant long distance scattering of burning or unburned EM.</td>
<td>Ground craters.</td>
</tr>
<tr>
<td>Type IV (deflagration)</td>
<td>(P) Combustion of some or all of the EM</td>
<td>(P) Rupture of casings resulting in a few large pieces that might include enclosures or attachments.</td>
<td>Some evidence of pressure in the test arena which may vary in time or space.</td>
<td>(P) At least one piece (casing, enclosure or attachment) travels beyond 15m with an energy level > 20J based on the distance/mass relationship used for HC. Significant scattered burning or unburned EM, generally beyond 15 m.</td>
<td>(P) There is no primary evidence of a more severe reaction and there is evidence of thrust capable of propelling the munition beyond 15m. Longer reaction time than would be expected in a Type III reaction.</td>
</tr>
<tr>
<td>Type V (burn)</td>
<td>(P) Low pressure burn of some or all of the EM</td>
<td>(P) The casing may rupture resulting in a few large pieces that might include enclosures or attachments.</td>
<td>Some evidence of insignificant pressure in the test arena.</td>
<td>(P) No item (casing, enclosure or EM) travels beyond 15m with an energy level > 20J based on the distance/mass relationship used for HC.</td>
<td>(P) No evidence of thrust capable of propelling the munition beyond 15m. For a rocket motor a significantly longer reaction time than if initiated in its design mode.</td>
</tr>
<tr>
<td>Type VI (no reaction)</td>
<td>(P) No reaction of the EM without a continued external stimulus. (P) Recovery of all or most of the unreacted EM with no indication of a sustained combustion.</td>
<td>(P) No fragmentation of the casing or packaging greater than that from a comparable inert test item.</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Primary evidence (P), shown in Bold text, would almost always be observed and would be definitive of the reaction type.
Secondary evidence could be observed, but its lack would not preclude that reaction type.

Note: (1) Fragment energy relationship shown in the Figure I-1

NATO/PFP UNCLASSIFIED
Observations from MSIAC HC database

- HD1.5 and 1.6 absent
- SsD1.2.3 only 61 assignments

Current HD & SsD not an ideal representation of munitions stockpile

Q: Is it necessary to revise the definitions of HD and SsD and what would be the implications?
HC (UN orange book) for transport also adopted for storage

Confinement example: US propellant testing in reinforced concrete magazines, Farmer, et al. 2015
Applicability of HD to storage

Scaling example: 105 mm HE IM shells, Edwards (2011), single shell detonation (left), two shell detonation (right)

Q: Can we develop improved guidance to clarify the applicability of HC assessments?

Q: What complementary information (related to scale and confinement) is needed to make a reliable estimate of munitions response in storage conditions?

Q: What information from the explosive (storage) safety community is needed?

Q: What is a sufficient number of test repetitions?

Q: Are there best practices?
Workshop structure

Supporting Munitions Safety

REGISTRATION WELCOME AND PLENARY SESSION
- 1 Improved HC and IM Assessment
- 2 Improved Consequence and Risk Analysis

TUESDAY BRIEFINGS
- 1A Improved CRITERIA FOR HD ASSIGNMENT PART 1
- 1B APPLICABILITY OF HD ASSIGNMENT TO STORAGE PART 1
- 2A INTERNAL BLAST AND DEBRIS
- 2B FRAGMENTATION

THURSDAY BRIEFINGS
- 1A IMPROVED CRITERIA FOR HD ASSIGNMENT PART 2
- 1B APPLICABILITY OF HD ASSIGNMENT TO STORAGE PART 2
- 2C EXTERNAL BLAST
- 2D THERMAL EFFECTS

FRIDAY BRIEFINGS
- 3A DEPLOYED MISSIONS AND OPERATIONS
- 3B STORAGE IN HOME COUNTRY
- 2E PROBABILITY OF EVENT

CONCLUSIONS AND WAY FORWARD
Current risk management

Hazard Classification

AASTP-3

Guidelines for safe storage of ammunition

AASTP-1

Deployed operations:
Field Distances (FD)

AASTP-5

Home country:
Quantity Distances (QD)

Explosives Safety Risk Analysis

If these cannot be met:

AASTP-4

Detailed models

Complicated

Simple

Explosives Safety and Munitions Risk Management (ESMRM)

ALP-16

Hazard Identification

Risk Tracking

Risk Analysis

Risk Approval

Risk Control Plan

Continuous process
To be conducted by ESO
As Low As Reasonably Practicable (ALARP)
Level of authority for risk approval
Quantity Distances

- **Interior QDs**
 - Inter Magazine Distance (IMD)
 - Explosive Workshop Distance (EWD)
 - Intra Line Distance (ILD)

- **Exposed Sites (ES)**
 - Potential Explosion Site (PES)
 - Explosive Workshop Distance (EWD)
 - Inhabited Building Distance (IBD)

- **Exterior QDs**
 - Public Traffic Route Distance (PTRD)

- **Net Explosive Quantity (NEQ, Q)**
- **Maximum Credible Event (MCE)**
- **Compatibility Group (CG)**
 - A-N
- **Sensitivity Group (SG)**
 - SG1-SG5
- **Hazard Division (Storage Subdivision)**
 - HD1.1
 - HD1.2 (SsD1.2.1, SsD1.2.2, SsD1.2.3)
 - HD1.3 (SsD1.3.1, SsD1.3.2)
 - HD1.4
 - HD1.5
 - HD1.6

Earth Covered Magazine (ECM)

Heavy Structure

Light Structure
Consequence and risk analysis

Current models primarily available for (mass) detonations

Benefits of less violent munitions responses cannot always be exploited

<table>
<thead>
<tr>
<th>Munitions response descriptors (AOP-39)</th>
<th>Models available for consequence and risk analysis, e.g. AASTP-4?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Detonation</td>
<td>Yes</td>
</tr>
<tr>
<td>II Partial Detonation</td>
<td>Yes/No (fraction that will detonate uncertain)</td>
</tr>
<tr>
<td>III Explosion</td>
<td>No</td>
</tr>
<tr>
<td>IV Deflagration</td>
<td>No</td>
</tr>
<tr>
<td>V Burn</td>
<td>Yes</td>
</tr>
<tr>
<td>VI No Reaction</td>
<td>NA</td>
</tr>
</tbody>
</table>

Q: What experimental data and models are required to quantify consequences and risks based on the response descriptors, in particular for Deflagration (type IV) and Explosion (type III)?
Various sessions on:

- Internal blast and debris
- Fragmentation
- External blast
- Thermal effects
- Probability of event

840 g steel fragment from a M107 155 mm artillery shell that reached 1824 m after a sub-detonative response. (Baker)

Detonation in RC magazine (Applied Simulations, Inc)

High speed frame from Kasun test (Grønsten)

Klotz Group Engineering Tool v 1.5.3
Workshop structure

Mon

REGISTRATION WELCOME AND PLENARY SESSION

1 Improved
HC and IM Assessment

2 Improved
Consequence and Risk Analysis

Tue

1A IMPROVED CRITERIA FOR HD ASSIGNMENT PART 1

1B APPLICABILITY OF HD ASSIGNMENT TO STORAGE PART 1

2A INTERNAL BLAST AND DEBRIS

2B FRAGMENTATION

Wed

1A IMPROVED CRITERIA FOR HD ASSIGNMENT PART 2

1B APPLICABILITY OF HD ASSIGNMENT TO STORAGE PART 2

2C EXTERNAL BLAST

2D THERMAL EFFECTS

Thu

3 Implementation of IEMRM

3A DEPLOYED MISSIONS AND OPERATIONS

3B STORAGE IN HOME COUNTRY

2E PROBABILITY OF EVENT

Fri

CONCLUSIONS AND WAY FORWARD
Increased granularity and detail more complex QD tables and consequence and risk analysis methods.

• In some areas this is very necessary, think about AASTP-5 where all munitions are to be aggregated as HD1.1. As a result benefits of any HD other than HD1.1 are currently not seen.
• In other areas (AASTP-1, already 100 pages of QD tables in current version) standards may become difficult to use. What is still acceptable?

Alternate approach: introduction of computer-based tools

• Easier application, less prone to error
• But also leads to a dependency on IT equipment which may be an issue e.g. during operations. Is this acceptable?
Munition-specific consequence and risk analysis

- Improves reliability of the results
- But limits range of applicability. Is this acceptable?

Development of holistic approach

- Cost and benefits of simplistic and conservative assessment methods versus more detailed quantitative assessment methods.
- Most suitable approach dependent on the lifecycle phase

Exploitation of smaller QDs and risks has issues:

- Reducing distances is often not possible (stationary infrastructure).
- Increasing quantities is also often not possible (in case of fully loaded storage buildings).
Conclusions

The envisaged results of the workshop are:

• Revised approach to munitions hazards and risks in light of development and introduction of IM

• Improved methods for consequence and risk analysis

• Improved understanding of the true nature of hazards and risks and how this can improve ownership and associated costs

See related presentation on Wednesday:
“Explosion Effects and Consequences from Detonations and Less Violent Munitions Response”
Questions?