An Approach to Predict the Slow Cook-Off Response of Confined & Vented Munitions Based on Small Scale Tests

by

N. Albert Moussa and Vijay Venkat Devarakonda

BlazeTech Corp.

29B Montvale Ave. Woburn, MA 01801. Tel. 781-759-0700

Michael J. Kaneshige

Sandia National Laboratories, NM

&

Lori Nock NSWC IHEODTD N00174

Contract N68335-16-C-0038

NDIA Insensitive Munitions and Energetic Materials Technology Symposium

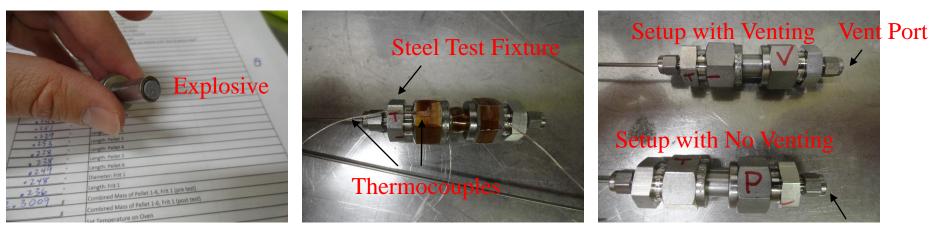
April 23 - 26, 2018

1

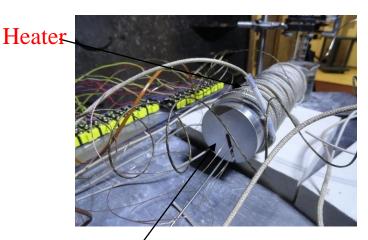
Approach for Scaling

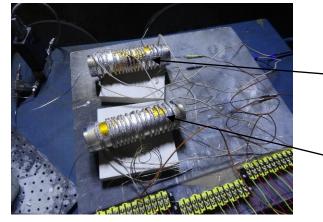
- 1. Characterize the thermal degradation kinetics of PBXN-111 (before ignition)
 - Small scale tests to measure degradation rates of confined & vented material vs. T(t)
 - Develop degradation kinetics models from test data accounting for dependence on *T* and venting
- 2. Examine the rate of combustion propagation in PBXN-111 (post-ignition)
 - Measure burn rates of pristine, heated and thermally degraded PBXN-111 in a strand burner vs. P
 - Develop models for burn rate vs. extent of thermal degradation (ϕ), *P*, and *T*
- 3. Develop fast running engineering models for
 - Ignition: predict $T(x,t) \& \phi(x,t)$ until ignition, and $T_{wall} \& P$ at ignition accounting for venting
 - Combustion: predict P(t), dP/dt(t) and dimensions of burned region accounting for the effects of T, P, ϕ & venting on burn rate
- 4. Model validation: compare T_{wall} at ignition predicted by the model with
 - Small scale cook-off tests by BlazeTech/Sandia
 - Larger scale tests by the Navy

The BlazeTech model can be used to predict the cook-off response of full-scale munitions loaded with PBXN-111 to heat accounting for venting



Step 1. Thermal Degradation of PBXN-111

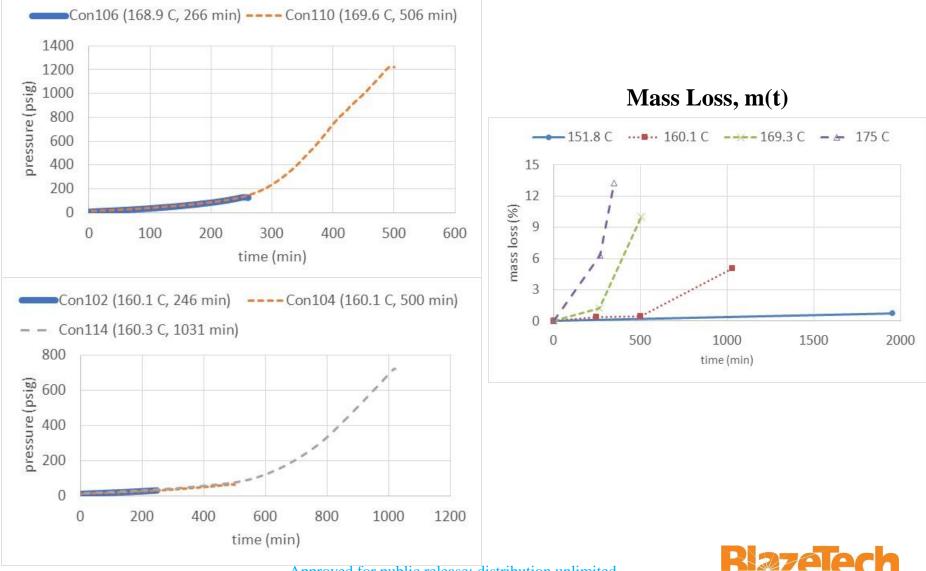

- PBXN-111: 43% AP, 25% Al, 20% RDX, and 12% HTPB/IDP binder system
- Measure thermal degradation rates vs. T(t) to generate easy-to-use kinetics data
- Test setup
 - Small scale, 1/4"×1/4" pellets (~2 g/test) & slow heating \rightarrow uniform temperature throughout
 - Two configurations: confined (8 tests) and vented (8 tests)
- Test procedure
 - Heat to $150 175^{\circ}$ C and hold for 4 32 hours (conditions designed to preclude ignition)
 - Measure five T(t) (3 on casing), explosive, oven, and when confined P(t)
 - Turn heater off. Monitor T(t) (and P(t)) during cool down
 - Measure mass loss due to thermal degradation by comparing pre- and post-test masses
- Data analysis: For each test,
 - Determine the time for which the explosive is hotter than 130 C
 - Determine the time-averaged temperature for that duration
 - Calculate the % mass loss from pre-test and post-test mass measurements
 - Develop kinetic model to calculate m(t) from measured P(t) and T(t)



Assembly Procedure

To Pressure Transducer

Approved for public release: distribution unlimited..


-Setup with No Venting (confined)

Setup with Venting (partially confined)

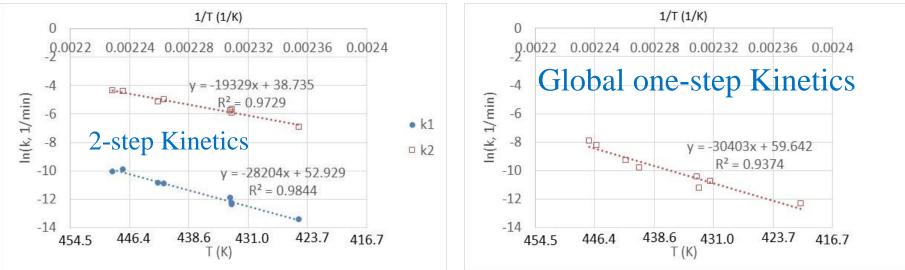
Al Ovén

Confined Tests: Effects of T(t) on P(t) and m(t)Pressure Rise, P(t)

Approved for public release: distribution unlimited..

Bringing Science to Safety

Thermal Degradation Kinetics of PBXN-111 Post-Test Photographs After Exposure to ~160 C for 1030 minutes

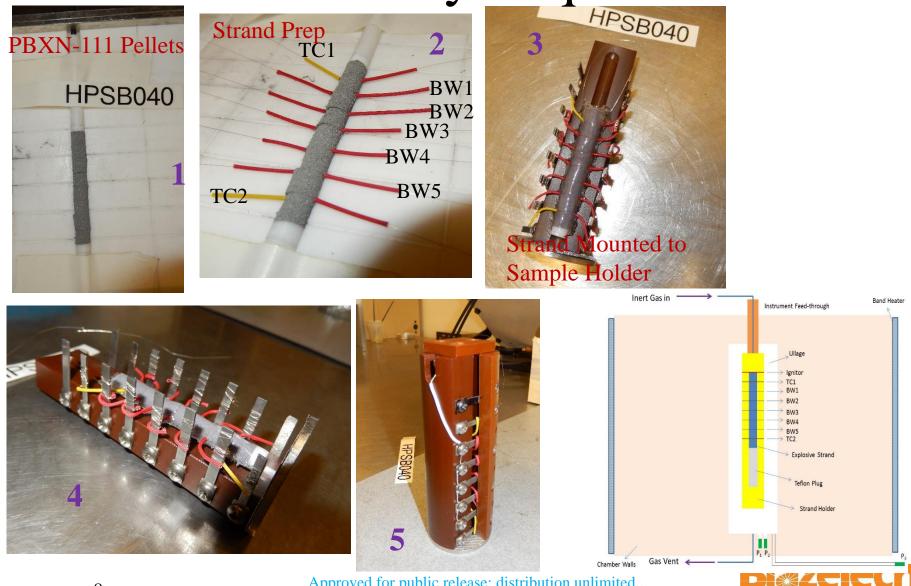

Confined Test Con114: 5.05% mass loss

Confined

Vented Test Con115: 2.93% mass loss

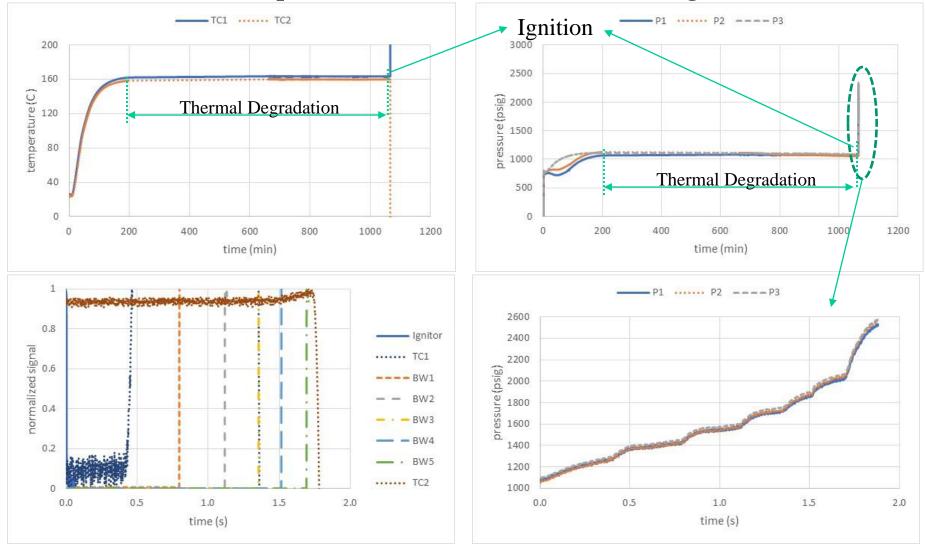
Vented

Thermal degradation rate increases with confinement



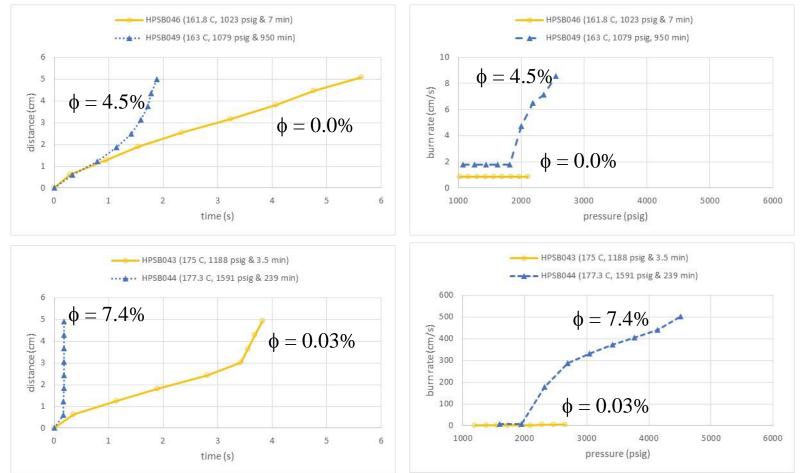
Step 2. Burn Rate of PBXN-111

- Measure burn rates vs. *T*, *P* and extent of thermal degradation (ϕ) in a strand burner
- 3 types of PBXN-111: pristine (2 tests), heated (4 tests) and thermally degraded (4 tests)
- Test procedure
 - Install ignitor, 2 thermocouples and 6 break wires in a PBXN-111 strand made from 8 cylindrical (1/4"×1/4") pellets
 - Fill strand burner with an inert gas to target initial pressure
 - Heat the entire strand burner to a desired temperature and hold to induce thermal degradation
 - Ignite the vertically oriented explosive strand at the top
 - Detect burn front arrival at various locations, x(t), using the thermocouples and break wires
 - Record P(t), T(t) and x(t)
- Data analysis: In each test,
 - For various T(t), calculate ϕ at end of heating period using the kinetic rates model
 - Generate *x*-*t* plots for the combustion front for various *P* and for ϕ at end of heating period
 - Fit appropriate curves through the *x*-*t* plots. Determine the burn rates and accelerations

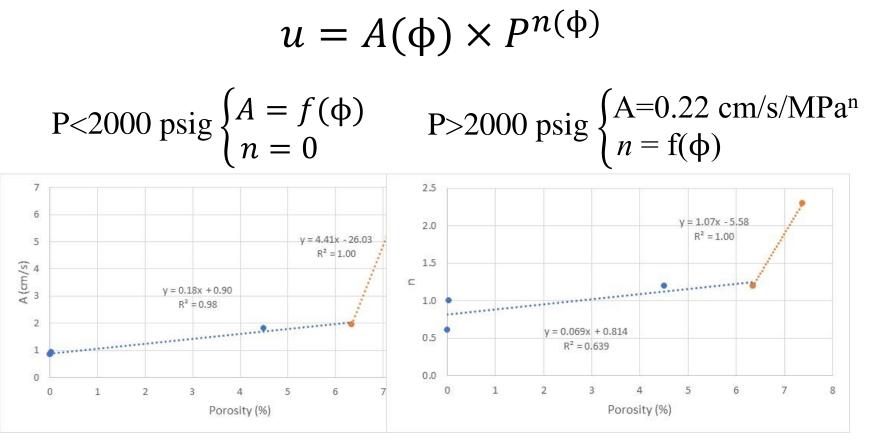

Assembly Sequence

Approved for public release: distribution unlimited..

Bringing Science to Safety


Sample Data from PBXN-111 Burn Test Strand Exposed to 160°C for 16 hours before ignition

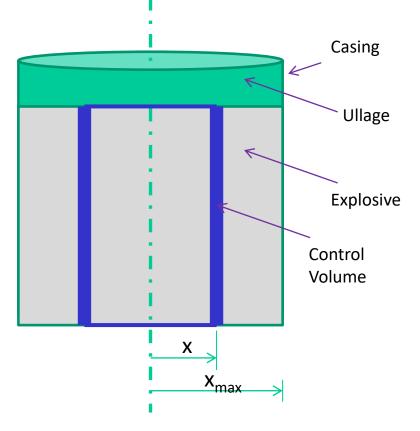
Rates of burn propagation & pressure rise increase with time 9 Approved for public release: distribution unlimited..


Effect of Thermal Degradation on Burn Rate

- Extent of thermal degradation (ϕ) estimated for each test using our kinetics model
- Undegraded PBXN-111: burn rate constant, but increases at 2000 psig
- Degraded PBXN-111: (i) P < 2000 psig: constant burn rate; (ii) P > 2000 psig: burn front accelerates with increasing ϕ and P

Burn Rate Model

- ϕ = extent of thermal degradation related to porosity (%) assuming uniform mass loss
- Slopes of burn rate parameters vs. *P* curves increase significantly at $\phi > 6.35\%$
- *u*: cm/s, *P*: MPa


Step 3. Model Development A. Ignition Sub-Model

- Fast running 1-d model

- Inputs
- Geometry: explosive & casing
- Heating: $T_{initial} \rightarrow T_{soak} \rightarrow T_{final}$ and durations
- Venting: onset *P* for venting and vent diameter

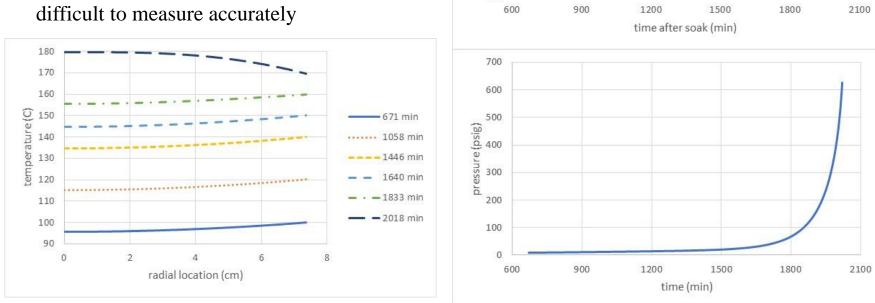
- Model tracks

- Heat conduction, thermal expansion
- Thermal degradation and morphology changes
- Venting: shift in reaction kinetics
- Changes in *P*: (i) heat & gas generation from degradation reactions, and (ii) venting losses
- Ignition when T inside explosive $>> T_{wall}$
- Outputs
- T(x,t), $\phi(x,t)$ and P(t)
- Occurrence of ignition: its time and location

Sample Calculation: Navy Sub-Scale Test 1

180

170 160


100

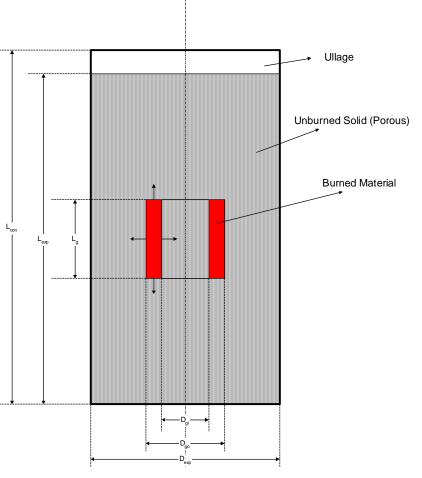
temperature (C)

- 6690 g (D ~ 14.74 cm, L ~ 21.9 cm) [1,2]
- Heating Profile: 8 hour soak at 65.6°C, then 0.052°C/min until ignition

	Test	Model
Ignition Time, min	1960	2018
T_{wall} @ ignition, °C	166.5	169.6

• Model predicts T(x,t), *P* and ϕ that are difficult to measure accurately

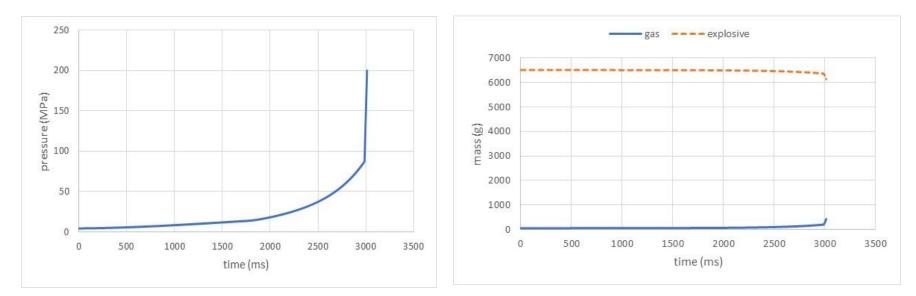
[1, 2] Beckett, et al, 39th PEDCS, JANNAF Meeting, Salt Lake City, Utah, 12/7-10/2015.



--- maximum

wall

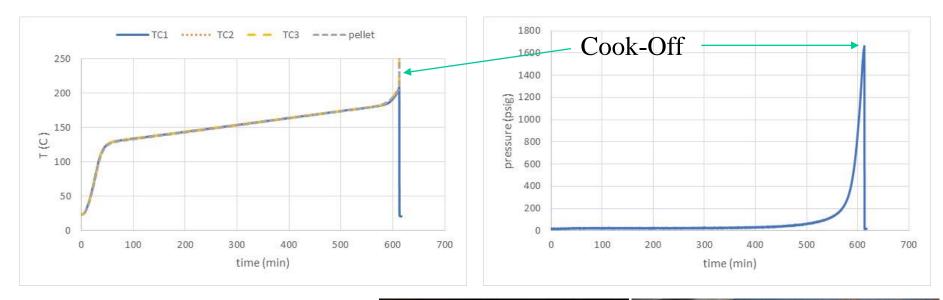
B. Combustion Sub-Model


- Fast running engineering model
- Inputs
- Geometry: explosive & casing
- Ignition location
- Conditions at ignition: T, P, ϕ
- Vent onset pressure and diameter
- Model tracks
- Burn front propagation
- Heat/gas generation by combustion
- Energy losses from burned region
- Model outputs
- $P(t), T_{burned}(t), m_{exp}(t)$, dimensions of burned region vs. t

Sample Calculation: Navy Sub-Scale Test 1

- 6690 g of PBXN-111 (D ~ 14.74 cm, L~ 21.9 cm) [1,2]
- Ignition location: explosive center
- Conditions at ignition:
 - Pressure = 626 psig (4.3 MPa)
 - Mean porosity ~ 0.4%
- Container assumed to fail at 200 MPa \rightarrow we stopped the combustion calculation

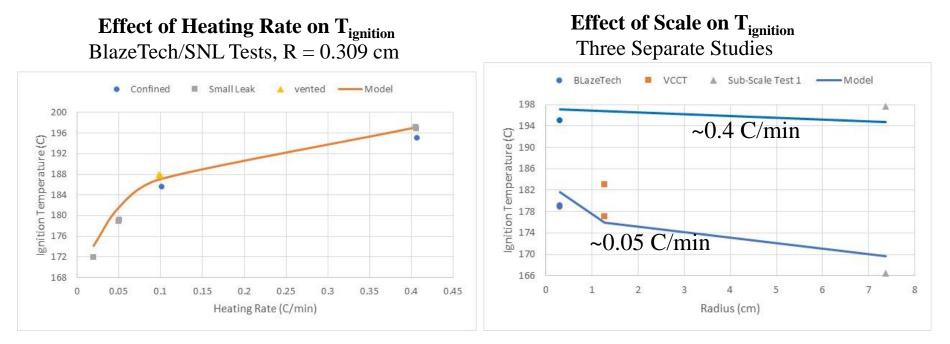
[1, 2] Beckett, et al, 39th PEDCS, JANNAF Meeting, Salt Lake City, Utah, 12/7-10/2015.


Step 4. Model Validation

- Limited literature data to validate ignition model and none for combustion model
- BlazeTech/SNL performed 8 small-scale cook-off tests to generate additional data:
 - 2 confined, 2 vented, 4 small leaks. Violent cookoff did not occur in tests with venting: we used the occurrence of significant self-heating as indicative of ignition

	BlazeTech/SNL	VCCT [3]	Sub-scale [1, 2]	Max/Min of Range
Explosive Mass (g)	2.09	57.6	6690	3200
Explosive Radius (cm)	0.309	1.27	7.37	24
Explosive Length (cm)	3.8	6.35	21.9	5.8
Ullage Volume (%)	45	~10	~10	4.5
Final Heating Rate (°C/min)	0.05 to 0.406	0.055	0.0515 to 0.479	9.6

Data from Cook-Off Test at 0.1°C/min



T_{ignition} for Various Sub-Scale Cook-Off Tests: Model Predictions vs. Measurements

- Ignition temperature (i) is almost independent of venting, (ii) increases with heating rate, and (iii) decreases with increasing size
- Model predictions agree well with a range of test data

Effect of Venting on Slow Cook-Off

- Venting affects thermal degradation reactions and combustion of PBXN-111
- Effects on thermal degradation (before ignition)
 - Gaseous reaction intermediates/products are released from the munition
 - Thermal degradation at a given T is slower for vented than confined material
 - A small vent at a low *P* could prevent pressure buildup
- Effects of venting on burn rate, *u* (after ignition)
 - *u* depends on extent of thermal degradation and *P* which is lowered by venting
 - P < 2000 psig, *u* remains constant
 - P > 2000 psig, *u* increases and may accelerate (depends on degradation)
 - Early and adequate venting to ensure that P < 2000 psig will reduce SCO violence
- Our small-scale cook-off tests on PBXN-111 have shown that
 - Completely confined material underwent violent cook-off (case fragmentation)
 - Vented material (leak in casing) underwent self-heating but not violent cook-off

Conclusions

- From testing and analysis, we have quantified:

- The pre-ignition thermal degradation rates = f(T, t and confinement)
- The post-ignition burn rate, $u = f(P \& \phi \text{ at ignition})$, *u* can vary by orders of magnitude with a threshold in sensitivity ~ 2000 psig
- We developed an engineering model of cook-off using these rates. It predicts:
- The time and spatial evolution of T, thermal degradation, burn front, unburnt and burn mass as well as P(t), the latter is indicative of severity
- The ignition temp. increases with heating rate (for a given size) and decreases with size (for a given heating rate), which is validated by the available data
- We seek additional data for model validation
- The model outputs can be coupled to a structural code to predict case fragmentation and collateral damage

- Our work can be extended to other munitions and used in the design of future tests and of vents

