IM Characteristics of Large Diameter Extruded Double Base Rocket Motors with Composite Cases

Joe Bellotte BAE Systems, Ordnance Systems Inc.

APPROVED FOR PUBLIC RELEASE

Traditional Extruded Double Base IM Response

- Typical IM response of extruded double base motors well characterized
 - Violent reactions for metal combustion chambers
 - Bullet Impact*
 - Frag Impact
 - Slow Cookoff
 - Fast Cookoff*
- Larger diameters are typically less favorable
 - Critical diameter can be a factor
 - Long L/D may present additional challenges

The Root of the Problem

- Inherent properties of EDB propellants
 - Both NG and NC are sensitive as individual components
 - The combination **REDUCES** the sensitivity of the materials
 - EDB propellants are the lowest card gap (least shock sensitive) in the Army production inventory
- Confinement
 - Confinement of double base is a known hazard
 - Metal cases provide minimal release in the event of a bullet or frag impact
 - Without bulkhead release mechanisms, cookoff results in the same issue

The Root of the Problem

- Lethal Fragments
 - Even less violent energetic reactions are a problem in the presence of lethal fragmenting materials
- Diameter
 - Even small diameters (less than 2") result in violent reactions

Previous Work on Composite Cases

- Hydra Missile (2.75" Diameter)
 - Previous work on the Mk. 66 motor shows improved IM response with composite cases
 - Simulated release mechanisms improved responses to cookoff environments
 - Tests may improve by performing system level test (including payload on the forward interface)
- Conclusions and Questions

*All information from IMEM 2006, Paper 7A, Farabaugh et. Al.

- Violent IM response not inherent to the energetic in the Mk. 66 configuration
- Composite cases are a viable mitigation for EDB propellants
- Is there a diametric limitation?

IM Test w/MK-66	Aluminum Case	Composite Case
Frag Impact (Army)	III — IV	IV**
Bullet Impact (.50 cal)	v	V
Fast Cook-Off	IV	V
Slow Cook-Off	j III. J	IV**

Extension to Large Diameter

- Large Diameter Tactical Motors
 - Development of large diameter tactical motors using EDB propellants ongoing
 - Benefits in cost, volume, complexity, manufacturability
 - Can IM properties be retained?

6

Recent Large Diameter Tactical Work

- Design and Manufacturing Development
 - Composite case EDB motors up to 6" in diameter have recently been developed for tactical application
 - More than double the web of the Mk. 66 rocket motor
 - Grain extrusion, machining, inhibition as well as motor performance in static testing have all been successfully demonstrated

7

Demonstrated IM Properties of Large Diameter EDB Motors

- Technologies incorporated for IM
 - Low shock sensitivity EDB propellant
 - Filament-wound graphite epoxy motor case
 - Shape memory alloy retention rings for forward and aft bulkheads

Demonstrated IM Properties of Large Diameter EDB Motors

- Tests
 - Fragment Impact
 - Slow Cookoff
 - Fast Cookoff
- Results
 - Even at the larger diameter and length, the composite case motors retain the IM properties demonstrated in the 2.75" size

9

Future Large OD Motor Work

- Larger Diameters
 - Demonstration of manufacturing and diameters larger than 6"
 - Evaluate IM response at thicker webs
- Additional IM mitigation
 - Evaluate IM response at a system level (payload, packaging)
 - Investigate IM response as a function of grain design (perf, L/D etc.)
 - Additional reduction in propellant shock sensitivity
 - Maintenance of shock sensitivity at higher energies

