Robust Enhanced Blast Explosive Manufacturing at Holston Army Ammunition Plant
NDIA I MEMTS 2018 (Session 4B)

Virgil Fung *, Brian Alexander, Erica Lotspeich, PhD., Robyn Wilmoth
BAE Systems, Holston Army Ammunition Plant, Kingsport, Tennessee, United States
24th April 2018
Briefing Outline

- Background
- EB Explosive Overview
- EB Explosive Process Development
- EB Explosive Manufacturing at HSAAP
- EB Explosive Manufacturing Capabilities
- Other EB Explosive Manufactured at HSAAP
- Summary
- Acknowledgements
Background – Enhanced Blast Explosives Overview

- Enhanced Blast (EB) Explosives offer performance characteristics of both aluminized and non-aluminized formulations for target defeat.

- The incorporation of aluminum powder achieved high shock overpressure for longer duration than non-aluminized composition.

- EB Explosive is formulated to optimize the balance of detonation velocity and total mechanical energy, resulting in desirable metal pushing capability as well as high blast energy.

- EB Explosives are typically selected for multi-purpose warheads in shoulder-launched weapon or direct-fire applications.

- EB Explosives of interest:
 - PBXN-18 (Aluminized HMX Based EB with inert plasticizer; ~ 30% aluminum)
 - PAX-3 (Aluminized HMX Based EB with energetic plasticizer; ~ 20% aluminum)
 - PAX-30 (Aluminized HMX Based EB with energetic plasticizer; ~ 15% aluminum)
 - PAX-42 (Aluminized RDX Based EB with energetic plasticizer; ~ 15% aluminum)
Background – EB Explosive Processing (1)

- Multiple ways to manufacture EB Explosive
 - Granulation via Aqueous Slurry Coating
 - One step process similar to standard Holston PBX manufacturing process
 - Production equipment readily available
 - Twin Screw Extrusion
 - Multi-steps process; incorporation of aluminum powder with nitramine precursor; granulator
 - Production Twin Screw Extruder not available at HSAAP
 - High Shear Mixer
 - Multi-steps process; dry or coated nitramine required
 - High Shear Mixer not available at HSAAP
Background – EB Explosive Processing (2)

- Aqueous Slurry Coating is preferred at HSAAP
 - Most efficient and cost effective process
 - Most suited for existing infrastructure without major investment
 - All processing steps conducted at HSAAP

- Choose between Water Replacement (WR) Fluid & Water
 - WR Fluid
 - Non reactive with aluminum powder
 - Similar boiling point as water
 - High cost (purchase/recovery) for Production
 - Water
 - Significantly lower cost than WR Fluid
 - No special delivery or handling equipment
 - Standard aqueous source for HE manufacturing at HSAAP
EB Explosive Process Development

- Hydrogen Generation from Aluminum/Water Interaction

\[
\begin{align*}
2\text{Al} + 6\text{H}_2\text{O} &= 2\text{Al(OH)}_3 + 3\text{H}_2 \quad (1) \\
2\text{Al} + 4\text{H}_2\text{O} &= 2\text{AlO(OH)} + 3\text{H}_2 \quad (2) \\
2\text{Al} + 3\text{H}_2\text{O} &= \text{Al}_2\text{O}_3 + 3\text{H}_2 \quad (3)
\end{align*}
\]

- BAE Systems developed a water slurry coating process to encounter potential Hydrogen generation via
 - Suitable additives
 - Specific temperature during key stages of the process (granulation & distillation)
 - Process Configuration Changes (e.g. solvent removal / lacquer preparation)

- Hydrogen monitoring conducted at various stages of the process (coating / dewatering / drying) and none was recorded, suggesting no hydrogen generation was detected throughout the process

- The new EB Explosive Water Slurry Process was successfully scaled from Lab (5 lbs.) to Production (300 – 350 lbs.)
EB Explosive Water Slurry Process - Overview

Lacquer Preparation

Al powder

Binder, Solvent & Plasticizer

Slurry Water + HMX

Lacquer

Granulation / Coating

Dewatering

EB Explosive Product Discharge

Nutsche

Drying / Packaging
EB Explosive Manufactured in Production at HSAAP (1)

- PAX-3
 - Developed & Qualified by US ARMY ARDEC
 - HMX based EB with aluminum and energetic plasticizer (BDNPA/F)
 - Previously manufactured at HSAAP via Slurry Coating with WR Fluid
 - Produced PAX-2 (precursor without Aluminum) for Twin Screw Extrusion (3rd party facility) in 2011
 - Robust Process for Slurry Coating with Water developed in 2015
 - Over 5,500 lbs. manufactured in Production to date
 - PAX-3 fielded in shoulder launched weapon and under evaluation in the 120mm Advanced Multi-Purpose (AMP), XM1147 Tank Cartridge
EB Explosive Manufactured in Production at HSAAP (2)

- PAX-3 (from 2017 Production Campaign)
EB Explosive Manufactured in Production at HSAAP (3)

- PAX-3 vs. PBXN-9
EB Explosive Manufactured in Production HSAAP (4)

- PBXIH-18
 - Developed & Qualified by US NAVY Indian Head
 - HMX based EB with aluminum and inert plasticizer (DOA)
 - Previously manufactured at HSAAP via Slurry Coating with WR Fluid
 - Current process involved Twin Screw Extrusion (3rd party facility) of precursor (e.g. PBXN-9)
 - Robust Process for Slurry Coating with Water developed in 2016
 - Over 2,100 lbs. manufactured in Production to date
 - BAE Systems water slurry material performed identically to WR slurry material (presented at IMEMTS 2016)
EB Explosive Manufactured in Production HSAAP (5)

- PBX1H-18 (from 2017 Production Campaign)
EB Explosive Manufacturing Capability at HSAAP (1)

- Manufacturing Equipment – R&D Pilot Plant

Lacquer Preparation Vessel

Coating/Granulation Vessel (Small)
~ 50-100 lbs.

Coating/Granulation Vessel (Large)
~ 300 lbs. or more
EB Explosive Manufacturing Capability at HSAAP (2)

- Manufacturing Equipment – Production Facility

Lacquer Preparation Vessel

Coating/Granulation Vessel (Large) ~ 300 lbs. or more
Other EB Explosive Manufactured at HSAAP

- **PAX-3 with alternate Energetic Plasticizer (R8002)**
 - ~2,000 lbs. manufactured with water slurry coating production process
 - R8002 plasticizer replacing BDNPA/F in order to address limited supply issue
 - R8002 readily available (HSAAP product)

- **PAX-30**
 - High HMX Content (>75%) EB Explosive
 - BAE Systems developed lab-scale coating process for both energetic plasticizer (BDNPA/F & R8002)
 - 2 lbs. batch size (Scale-Up Ready)
 - Samples under end-use evaluation

- **PAX-42**
 - High RDX Content (>75%) EB Explosive using BDNPA/F
 - Robust lab scale process developed under IRAD effort
 - 2 lbs. batch size (Scale-Up Ready)
Summary

- BAE Systems had developed a **ROBUST, SAFE & COST EFFECTIVE** one-step water slurry coating process to manufacture aluminized EB Explosive at HSAAP.
- Water-Replacement Fluid is no longer needed to mitigate the risk of Hydrogen Generation.
- PAX-3 (5,500 lbs.), PBXIH-18 (2,100 lbs.) and PAX-3 w R8002 (2,000 lbs.) have been successfully manufactured with Production Equipment.
- Both PAX-3 and PBXIH-18 made in this process are qualification-ready.
 - PAX-3 will be subjected to explosive qualification later this year.
- No difference in material characteristics between Water and WR Fluid.
- R&D Pilot Scale Coating Vessel available for Process Development and Optimization with current and new EB Explosives.
- Other pressable EB Explosives such as PAX-30 and PAX-42 ready to “Scale-Up”.
Acknowledgements

- BAE Systems OSI – Holston Army Ammunition Plant
 - Dr. David Price
 - Dr. Neil Tucker
 - Dr. Tess Kirchner
 - Dr. Jeremy Headrick
 - Mr. Matt Hathaway
 - Mr. Chris Long
 - Ms. Kelly Smith
 - Ms. Denise Painter
 - Mr. Todd Dye
 - Mr. Tracy Kelly
 - Mr. Paul Lucas
 - Mr. Myles Donegan
 - Mr. Greg Krieger
 - Mr. Sam Littlejohn