Always a Step Ahead ARDEC ARMAMENTS

MDNT IM Melt Phase Energetic Binder

NDIA IMEM Technology Symposium Portland, OR April 23-26, 2018

Omar Abbassi US Army ARDEC

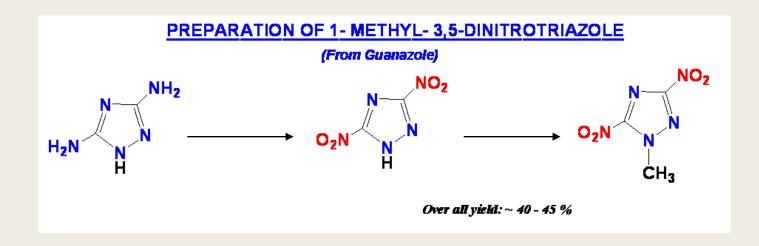
UNPARALLELED COMMITMENT & SOLUTIONS

Act like someone's life depends on what we do.

DISTRIBUTION A: Approved for public release; distribution unlimited.

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT & ENGINEERING CENTER

- Introduction
- Synthesis
- Characterization
- Formulation
- Porosity
- Vapor Pressure
- Summary
- Ackowledgements


INTRODUCTION

- MDNT (1-methyl-2,4-dinitrotriazole) is an explosive binder with a melting point below 100°C
- Due to promising theoretical calculations and estimates, this material was investigated as a potential melt cast alternative
 - Less sensitive than TNT
 - Performance greater than DNAN
 - Performance greater than TNT

- ARDEC
- MDNT was synthesized in ARDEC labs in a 2-step process from Guanazole

- Overall yield was 40-45%
- Prepared on the 10 to 25g scale

SAFETY TESTING

- Small scale safety testing was conducted
 - ERL Impact > 100cm
 - BAM Friction > No reactions at 252N
 - ESD > No reactions at 0.25J
 - Vacuum Stability: Total excess of gas evolved < 2mL
- Synthesis was scaled up providing quantities to support additional testing

PERFORMANCE

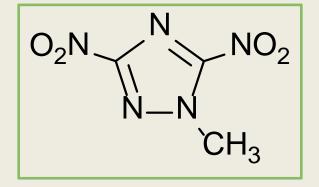
- Series of rate sticks were prepared for detonation velocity testing
 - 0.50"
 - 0.75"

- Densities were 90-95% of TMD
- Testing at 0.50" and 0.75" illustrated performance exceeding TNT, and equivalent to Comp B levels

SHOCK SENSITIVITY

- Shock sensitivity testing was conducted
 - Partial LSGT (3 tubes) at 89% of TMD
 - IHE at 83% of TMD

• Testing illustrated sensitivity improvements over TNT



- MDNT (1-methyl-2,4-dinitrotriazole) is viewed as a promising melt phase energetic material for both its performance and insensitivity attributes
 - Comp B level performance without solids
 - Less shock sensitivity than TNT

U.S. ARMY RDECOM®

- \succ Formula: C₃H₃N₅O₄
- Density: 1.68 g/cm³
- ➤ Melting Point: 94 97 °C
- Detonation Pressure: = Comp B
- Detonation Velocity: = Comp B
- Shock Sensitivity: < TNT</p>

MDNT (1-methyl-2,4-dinitro-1,3,5-triazole)

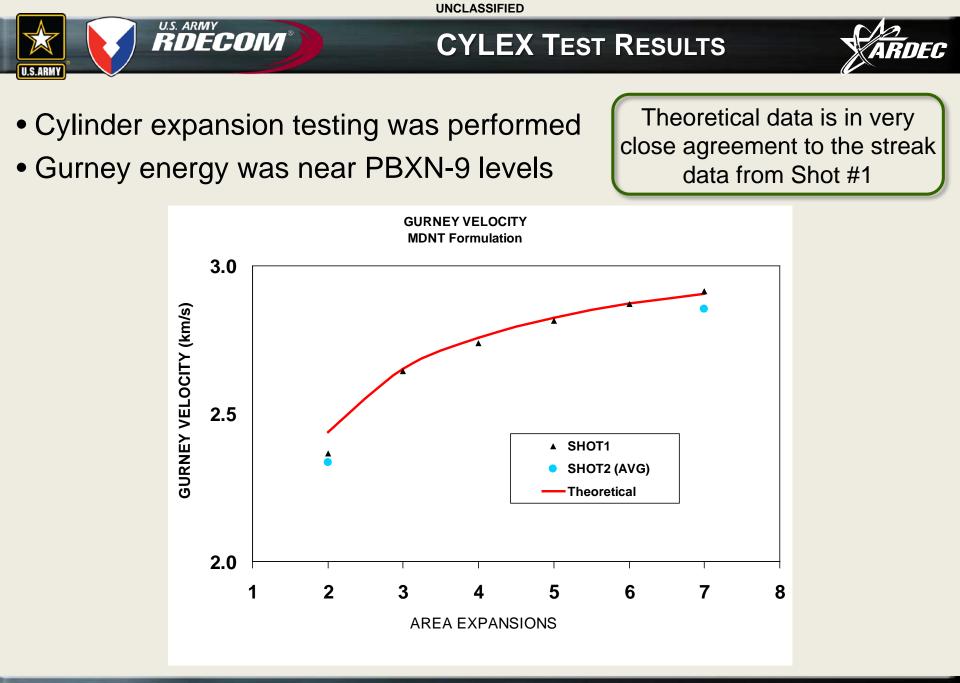
MDNT FORMULATION EFFORTS

- <u>Objectives</u>: to develop a formulation with...
 - 1. Det Velocity and Det Pressure equal to or greater than LX-14
 - 2. Gurney Energy equal to or greater than PBXN-9

Initial Path Forward:

RDECOM[®]

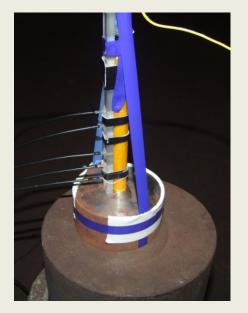
- Select formulation based on loading study to determine amount of HMX to maintain ideal viscosity for melt-cast operation
- Addition of additives to aid in casting quality
- Perform performance and sensitivity testing


MDNT-HMX FORMULATION ANALYSIS

• Initial castings resulted in assets with 96.7% TMD

• Safety Testing:

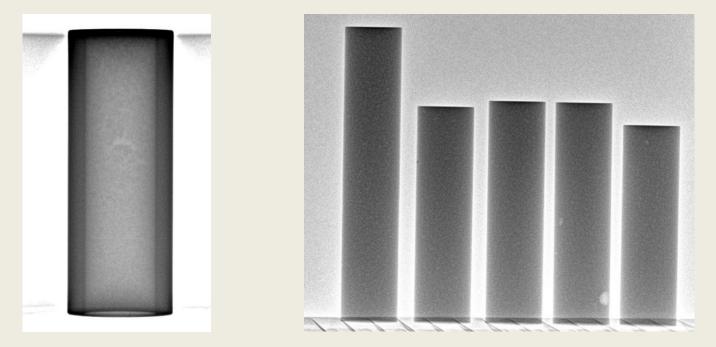
- ERL impact 50% point = 28.8 cm
- − BAM friction \rightarrow 10 NO GO @252N
- − ESD \rightarrow 20 NO GO @0.025 joule
- − Thermal Stability → PASS
- Small Scale Burn → PASS



MDNT-HMX UNCONFINED TESTING

- Performance testing in 0.75" Unconfined rate stick testing
 - Detonation Velocity = PBXN-9
 - Detonation Pressure > LX-14

0.75" Rate Sticks of MDNT-HMX Formulation



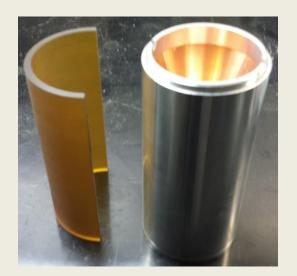
SHOCK SENSITIVITY

- IHE assets for MDNT-HMX:
 - ~92% TMD
 - Shock sensitivity was < LX-14 and = PBXN-9
- Shock sensitivity testing may have been negatively affected by the porosity and low density of the test assets

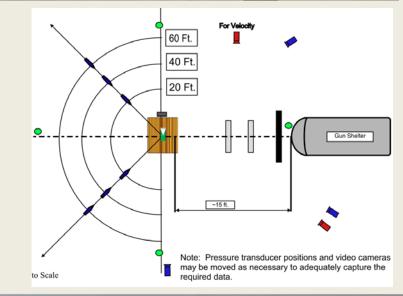
FRAGMENT IMPACT TESTING

• Testing performed in a 3.2" Generic Testing Unit

MDNT-HMX Formulation

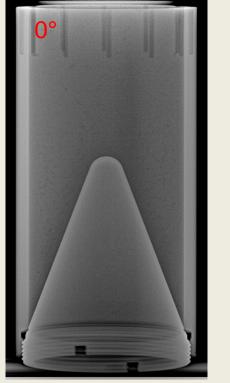

RDECOM

– LX-14


U.S.ARN

- Impact Mitigation Liner
- 6000 fps

UNCLASSIFIED


• No liner, 6000 fps

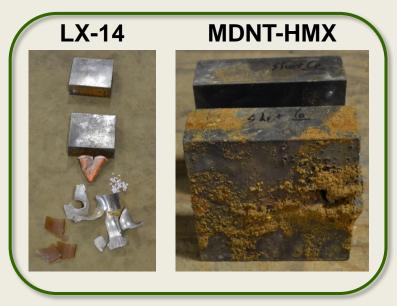
U.S.ARN

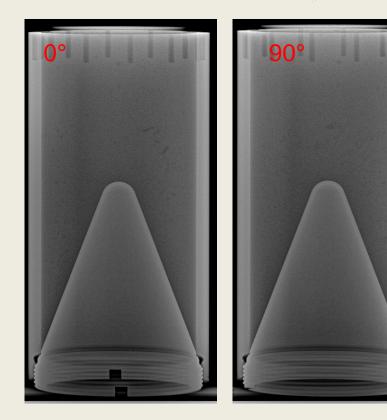
- LX-14 High Order Rxn
- MDNT-HMX High Order Rxn

Test	Liner	Velocity (fps)	Steel Plates	Largest	Furthest	P1/4 20ft (psi)	P2/5 40ft (psi)	P3/6 60ft (psi)	Estimate
LX-14	None	5353	Through Hole	NA	NA	4.73/6.78	2.42/2.44	1.21/1.80	Type I
MDNT-HMX	None	5968	Slug in 2 nd plate	NA	NA	4.22/5.30	2.23/2.45	1.02/1.30	Type I

UNCLASSIFIED

FRAGMENT IMPACT RESULTS – LINER




- 6mm Liner at 6000 fps
 - LX-14 Type III/IV

U.S.ARN

MDNT-HMX High Order Rxn

RDECOM

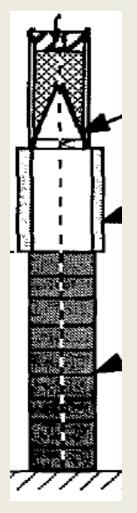
Test	Liner	Velocity (fps)	Steel Plates	Largest	Furthest	P1/4 20ft (psi)	P2/5 40ft (psi)	P3/6 60ft (psi)	Estimate
LX-14	6mm	5954	HE splatter	Copper Liner	Aluminum Casing	0.53/0.35	0.25/0.25	0.17/0.13	Type III/IV
MDNT-HMX	6mm	5990	Through Hole	NA	NA	3.40/3.58	2.21/2.13	1.26/1.15	Type I

FRAGMENT IMPACT TEST SUMMARY

- MDNT-HMX formulation FI testing had violent reactions at 6000 fps with a 6mm Liner
 - 6mm of liner mitigated LX-14 to Type III/IV
 - MDNT-HMX assets had several voids and porosity
 - Casting quality and densities a concern

Penetration tests were conducted

RDECOM[®]

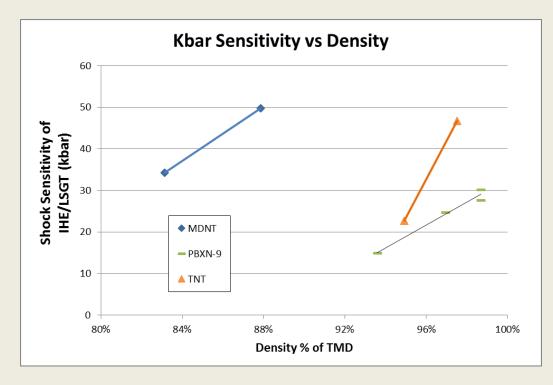

- Copper Liner, through steel stack
- Two LX-14 baselines
- Two MDNT-HMX tests
- Compare to historical LX-14 and PBXN-9 data
- 5 CDs Standoff

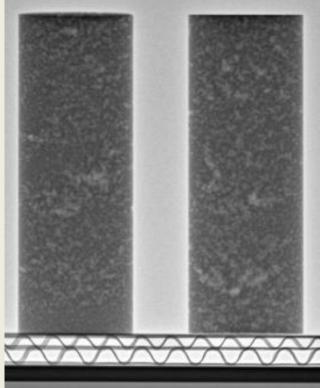
U.S.ARI

Explosive	Avg. Penetration Depth	Shot 1 Depth	Shot 2 Depth		
MDNT-HMX	86% of LX-14	81% of LX-14	91% of LX-14		
PBXN-9*	90% of LX-14	NA	NA		
LX-14*	91% of LX-14	NA	NA		

*PBXN-9 and LX-14 historical data

- Liner design is not optimized for the explosives being compared
- Still a good barometer of how well the MDNT-HMX performs
- MDNT modified formulation coupled with a proper liner redesign effort may meet or exceed LX-14 penetration

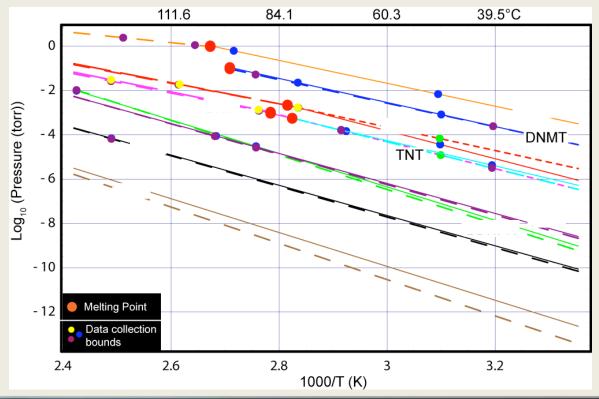




- Trends illustrate that at higher density, sensitivity to shock is improved.
- Extrapolating the trend for MDNT projects extremely favorably for shock sensitivity at higher density

U.S. ARMY RDECOM®

MDNT CASTING X-RAYS

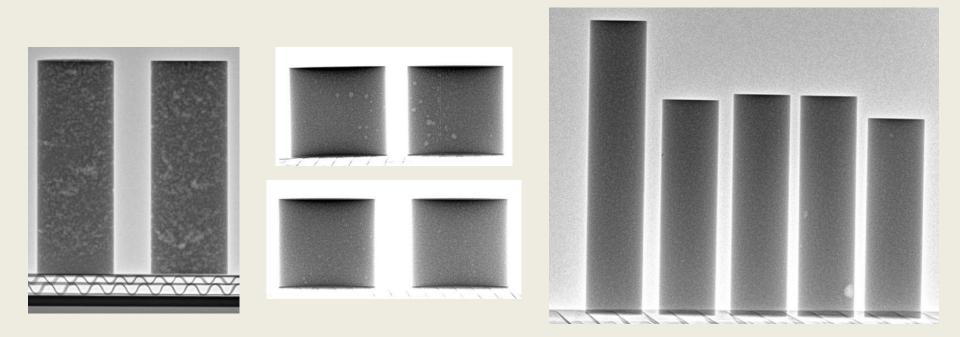


- Barrier with MDNT has been the casting quality. Low density of casting:
 - 1. Limits the performance
 - At low densities (~90% TMD) the Det Vel of MDNT was comparable to Comp B
 - MDNT-HMX ~92% TMD was comparable to PBXN-9
 - Higher densities should improve the performance
 - 2. Negatively effects shock sensitivity
 - Increase in voids and hot spots, a cleaner cast will result in an improved shock sensitivity.

MDNT CASTING CONCERNS

- A casting study was setup to improve casting quality of MDNT:
 - Use of processing additives to address porosity and cast quality
 - Optimization of pouring temperature and temperature of metal parts
- Possible cause for voids and porosity is high vapor pressure of MDNT

UNCLASSIFIED


U.S. ARMY RDECOM®

MDNT CASTING QUALITY

- Off-gassing may be occurring during casting/cool-down procedures, resulting in voids and porosity
- With similar conditions, MDNT exhibits excess porosity in comparison to other melt-phase explosives

DERMAL SENSITIZATION

- MDNT is a skin irritant and sensitizer, with subsequent exposures resulting in heightened symptoms
 - During melt-phase and lab operations
 - All users were not affected

RDECOM®

- Mitigated with proper PPE
- Dermal irritation symptoms were present without direct exposure to the solid form
 - Bag of dry powder
 - Post processing inspection
 - High vapor pressure
- Efforts evaluating MDNT at ARDEC were halted due to recurring dermal irritation and sensitization

SUMMARY AND CONCLUSIONS

- MDNT (pure material):
 - MDNT tested with performance up to Comp B levels in detonation velocity and detonation pressure
 - Shock sensitivity below TNT

RDECOM®

- MDNT-HMX Formulation:
 - MDNT-HMX formulation at or exceeding PBXN-9 output levels, and approaching LX-14
 - Shock Sensitivity was similar to PBXN-9
- Sensitivity and Performance are both negatively affected by porosity that may be pronounced due to high vapor pressure and off-gassing during melt-pour procedures
- High vapor pressure and dermal sensitization ultimately led to termination of MDNT efforts at ARDEC.

ACKNOWLEDGEMENTS

- ARDEC Team for testing and analysis
- ARDEC/BAE Labs for initial synthesis scale-up
- Nalas Engineering for developing scalable synthesis route
- BAE Holston for scale-up in pilot plant facilities
- PEO Ammo IM TTA
- JIMTP Program Office
- Dr Leonard Stiel for theoretical calculations

QUESTIONS?

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

UNCLASSIFIED

26