

Influence of ageing on the properties of IHE

Rheinmetall WM, Development Department, Dr. Hendrik Radies

Motivation

- Modern scenario in NATO countries might be in very hot and also very cold regions
- The storage for ammunition in conflict area is under non-ideal conditions

Temperature diagram Kabul

Motivation

- Handling of ammunition in battle zones is different to normal training
- In duty the unprotected vehicles with all their ammunition might be outside in the sun for some days or weeks

Fully loaded vehicles

Motivation

- To minimize risks of the handling of munitions, investigations concerning properties of aged high explosives were done
- Different explosives were prepared, aged and investigated
- The investigations were planned in different steps
 - 1. Determination of the properties of unaged explosives
 - 2. Ageing of explosive samples
 - 3. Determination of the properties of aged explosives
 - 4. Comparison with unaged samples

Status

- High explosives e.g. the binder system of PBX is subject to an aging process during life time
- Sublimation rate in TNT based explosives is also a part of the ageing process
- Different experiences conc. ageing of high explosives exists
- Different methods are written in literature

Goals

- Gain experience conc. ageing of PBX and additionally melt cast explosive
- Find a successful method for investigation of aged samples

Tested explosives

Three different explosive charges were tested

- Plastic bonded explosive
 - PBX-1 (RDX, Me, HTPB-binder)
 - PBX-2 (RDX, HTPB-binder), investigations partly still in progress
- Melt cast explosive
 - MC-1 (TNT based), investigations partly still in progress

Geometry of samples

- Cylinder 40x40mm, machined
- Janaf samples
- Miscellaneous

Ageing of samples and realized tests

Ageing

Storage at

- +21°C, 12 months (reference)
- +63°C, up to 12 months
- +71°C, up to 6 months
 - to simulate \approx 25 years under depot conditions

Because of safety reasons no storage at higher temperatures!

Storage for PBX-1 partly unpacked and partly packed; for PBX-2 and MC-1 only packed

Tests

Change of geometry Mass lost (loss of plasticizer) Density Shore A hardness Thermal analysis (DSC) Vacuum stability **IM-Properties** Impact and Friction sensitivity GAP-Test Mechanical properties

Tensile testing and compressive testing

Change of geometry

Tested on cylinder (PBX packed and unpacked)

- Diameter
 - Biggest change ≈2.4%

• Length

Biggest change ≈2.1%

- Weight loss
 - Biggest weight loss ≈ 4%
- Density
 - Biggest change 1.66->1.71g/cm³

Storage temperature	Storage time	Weight loss		Geometry change			
				Diameter		High	
		unpacked	packed	unpacked	packed	unpacked	packed
[°C]	[months]	[%]	[%]	[%]	[%]	[%]	[%]
+21°C	0	0	0	0	0	0	0
	12	-0,03	0,04	-0 <i>,</i> 05	0,16	0,04	0,12
+63°C	3	0,55		-0,49		0,18	
	4		0,02		0,05		0,28
	6	0,79		0,53		0,38	
	9	2,08		1,18		0,96	
	12	2,5		1,14		1,17	
+71°C	3	3,79		1,67		2,21	
	4		0,02		-0,02		0,39
	6	3,88		2,35		2,13	

Obvious change of geometry and weight in unpacked PBX samples, no influence on packed PBX and melt cast cylinders!

Shore A hardness

- Because of the high Shore A level of MC-1 investigations were only done with PBX
- The Shore A of the PBX sample increased with storage time
- The changes of the shore A of the packed samples in a range of 15-20 Shore A
- The Shore A values of the unpacked PBX samples increases so extremely that the values are outside of the measuring range (maximum 100 Shore A, start value 65 Shore A)

Obvious differences between unpacked and packed samples

Tensile Tests on PBX

- Testing with unpacked samples
- Measurements in temperature range
- Sample preparation
 - Cast in special mould without machining
 - Cast in "U-Profile", afterwards cutting
 - Cast as disc, afterwards cutting
 - Cast as bloc, afterwards shaping and cutting

Tensile Tests on PBX

 Significant influence of storage conditions
Storage +71°C => no failure up to force maximum Samples were very brittle

Compressive test

Measurements in temperature range (-46°C, +21°C and +63°C) Samples: PBX-1 (unpacked and packed), PBX-2, MC-1

PBX-1 shows a significant influence of storage conditions

Compressive test

Unpacked, @71°C stored PBX cylinder showed significant optical differences after compressive tests

In comparison, packed PBX cylinders were more stable

All samples 4 month stored packed @ +71°C

Compressive test

• Compressive tests of the melt cast explosive shows a significantly different fracture to PBX but no influence of ageing

Vacuum stability

Testing of unpacked and packed stored PBX samples

Hardly any change on vacuum stability

Stor	rage	Vacuum Stability		
Temperature	Storage Time	unpacked	packed	
[°C]	[month]	[cm³/2,5g]	[cm ³ /2,5g]	
Start RT	0	0,12	0,08	
+21°C	12	0,15	0,11	
+63°C	3	0,27	0,11	
	6	0,11		
	9	0,26		
	12	0,19		
+71°C	3	0,24		
	4		0,16	
	6	0,19		

Currently no measurements of the melt cast explosive are possible

Thermal analysis

DSC (heat rate 5K/min up to 360°C)

With PBX samples hardly any influence on decomposition point / weight loss

Sublimation rate with MC-1

- Tests of MC-1 via DTA at isotherm temperatures (67°C, 71°C and 78°C) for determination of sublimation rates*
- Melted MC-1 in a cup with a diameter of 6.2mm ≈ 0.302cm² surface

© Rheinmetall AG I 2018-26-04

IM Properties of Explosive

Testing with unpacked PBX-1 samples

No influence on friction sensitivity

Important increase of impact sensitivity after storage at +71°C

Sto	rage	Tests		
Temperature	Storage Time	Impact Sensitivity	Friction Sensitivity	
[°C]	[month]	[1]	[N]	
Start RT	0	18	240	
+21°C	12	18	240	
+63°C	12	22	240	
+71°C	6	8	240	

Measurements of PBX-2 and MC-1 are still in progress

GAP Test

- Testing with packed PBX samples
- 21mm GAP Test, GAP: PMMA
- Donor charge: HWC

Sto	rage	GAP Test		
Temperature	Temperature Storage Time		NoGo	
[°C]	[month]	[mm PMMA]	[mm PMMA]	
Start RT	0	7	8	
+21°C	3	9	11	
+63°C	3	10	11	
+71°C	3	10	11	

- Only small change during storage
- No influence of storage temperature

No tests with unpacked PBX

Measurements with MC-1 in progress

Conclusion

- Important parameters for the PBX:
- Sample conditions (packed and unpacked)
- Storing conditions (+71°C the biggest effects)
- No / small change after storage:
- Vacuum stability, thermal analyses, friction sensitivity
- GAP test (packed)
- Significant change after storage (unpacked samples)
- Impact sensitivity, tensile testing, compressive testing, Shore A hardness
- Starting with 71°C significant sublimation can be detected

For testing of ageing phenomena of PBX the determination of mechanical properties (Shore A hardness (guide value) and tensile strength resp. compression tests) are favored

Because of the still running tests no final statement of the ageing of the melt cast can be given

FORCE PROTECTION IS OUR MISSION.