Property-Processing Implications in Additive Manufactured Materials for Munitions
An MSIAC Limited Report

Wade Babcock
Materials Science Technical Specialist
+32 2 707 56 36
w.babcock@msiac.nato.int

Unclassified / Unlimited Distribution
Supporting Munitions Safety

- More than 20 Workshops
- Open- and Limited-Distribution Reports
- Support NATO Policy, Advice and Review
- Open & Secure Websites with more than 600 users
- Answering more than 2600 Technical Questions
- Training, Country visits, Fellow and Students
- 15 Distribuable Software Tools and Databases

Unclassified / Unlimited Distribution
A 2017/18 Work Element:
- Novel Material Flaws & Processing/Property Implications of Additive Manufacturing (AM) for Energetics

AM is being applied in energetics / munitions

Unique processing creates novel flaws and failure modes
- Heating, melting, re-melting, powder deposition, incomplete melting, extrusion/flow, curing, etc.

Material selection in AM is still nascent
- Availability, melting, processing
• Process rigidity has been a hallmark of energetics processing
 – Safety, repeatability: driving forces
 – Once a process is qualified, adhere to it!

• Flexibility is the primary virtue of AM
 – Ability to fabricate virtually any part
 – Variability from one part to the next
 – Compositional variation within a part…
AM Variability

• Variability at all levels
 – Within one build
 • Location and geometry dependent
 – Between multiple builds
 • Same machine, same settings
 • Same machine, varied settings
 • Different machines, same manufacturer
 • Similar machines, different manufacturers
 • Different users…

DEFECT DISCOVERY

• Novel defects are being discovered
 – New processing methods bring new defects, flaws, failure modes

• Defects vary between processing methods
 – Need to match, catalog, and quantify

• Classical discovery of defects is through failure
 – Modern society seems to have a lower threshold for technical failure
Supporting Munitions Safety

Types of Defects

- Porosity
- Voids
- Layer / Cross-layer Defects
- Under-melted / Under-consolidated
- Cracking
- Surface Finish

• Processing, structure, properties, & performance are intimately linked
• Classical understanding arrived at through decades, centuries of experimentation
• Nascent AM techniques are not well-understood with respect to PSPP

IMPLEMENTATION CHALLENGES

• Fabricating replacement parts
 – Classical parts are qualified via statistical analysis, process controls, inspection

• AM Characteristics
 – Continually variable, local processing
 – Raw materials intended for radically different processing methods
 – Flexibility is a disadvantage – unconstrained process
 – Ability to create difficult-to-inspect geometries
 – Fab process may introduce heating and reheating
 – As-yet-difficult to establish post processing treatments

Unclassified / Unlimited Distribution
• Airframe manufacturers
 – Certify AM techniques to fabricate air-worthy parts
 – Constrained in high-risk, low-margin for error
 – Certification classically based on statistical analysis, process controls, inspections
 – ~10-year head-start

• Medical devices
 – Novel shapes, materials, surface finishes
 – Constrained in materials, life-cycle
 – Incredibly complex certification process
 – ~15 year head-start
Summary

• AM presents unique opportunities in the munitions design and fabrication space

• Many groups are working to implement AM in munition items
 • Some have created working parts and sub-systems
 • Complete munition items …

• New processing technologies are always accompanied by new defects and failure modes
 – Not a show-stopper, just diligent effort and planning

• Other industries may provide good examples of qualification / certification processes applicable to munitions
• Solid rocket propellant grains usually have a hollow “bore”

• Engineering the shape of the bore, controls the thrust profile
WHAT MAKES AM APPEALING?

- Fabricate multiple materials at once
- Create materials that are difficult / impossible with traditional bulk mixing
- Alter composition of a material with respect to geometry

Change critical parameters such as burn rate, elasticity, or fracture toughness across grain dimensions.

Enable thrust profile to change not because of geometry, but because the propellant composition is changing as the burn front moves outward.