

Munitions Safety Information Analysis Center

Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety

MITIGATION TECHNOLOGIES FOR PROPULSION APPLICATIONS

Christelle Collet, Maud Cheneau, Emmanuel Schultz

IMEMTS 2018 Portland, OR, USA

Introduction

- 1. Passive Venting Devices
- 2. Active Mitigation Systems
- 3. Intumescent Coatings
- 4. Casing Materials
- 5. Barrier Packaging Arrangement

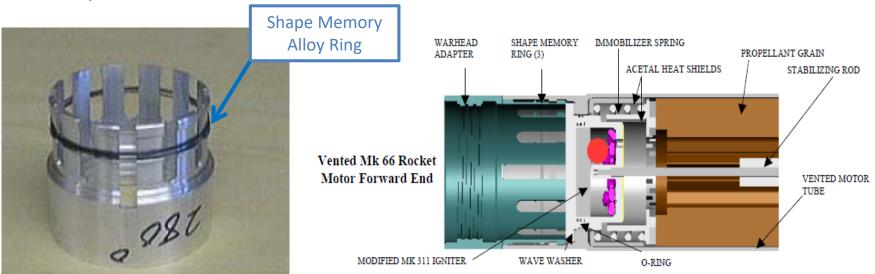
Analysis & Conclusions

INTRODUCTION

General SRMs' IM Signatures agreed by experts during the MSIAC workshop on IM Technology Gaps^{*}:

	IM Signature					
Rocket Motor Type	FCO	SCO	BI	FI	SR	SCJ
Reduced Smoke /Smokey	IV	I-I∨	IV	IV	Pass	Ш
Min Smoke	IV	I-IV	I-IV		1-111	

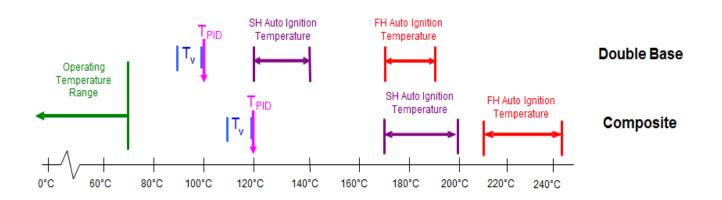
In 2016, in the frame of an MSIAC internship project, a review was done on mitigation technologies applied to SRMs


53 examples of mitigation techniques / examples / strategies were found during this study:

- 1. Passive venting devices: 8 examples
- 2. Active mitigation systems: 16 examples
- 3. Intumescent coatings: 15 examples
- 4. Casing materials: 8 examples
- 5. Packaging Barrier Arrangement: 6 examples

Supporting Munitions Safety

- Venting devices are designed to release the pressure in the casing created by an unexpected combustion before it transits into a more hazardous regime (in case of DDT for instance)
- Passive venting devices are mostly designed against FCO and SCO threats
- Example of a shape memory alloy ring for the MK66 motor: upon heating, the ring contracts, squeezing the tang fingers inward, and releasing the adapter

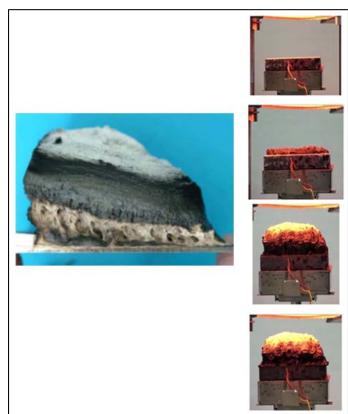


Hawley, E., Johnson, J., Insensitive Munition Technologies developed for the 2.75-Inch Rocket System, IMDT, 2003

Functioning principle:

- 1) Temperature raises rapidly around the munition (FCO) or uniformly within the munition (SCO)
- 2) A venting device reacts, resulting in a rupture of the case
- **3)** <u>Before</u> reaching its slow heating auto ignition temperature, <u>but after</u> the venting device has functioned, the propellant is ignited by a Pre-Ignition Device (PID)
- 4) The gases are evacuated through the vent, resulting in a controlled and low burning rate

Strickland, A., Nugeyre, J-C., A scientific review of the current state of IM mitigation devices for use with rocket motor systems and the future development outlook, IMEMTS, 2007


A relevant example in this family: the RITA system designed for the MK22 rocket motor

Sain, J., Sanford, M., Active Mitigation: Rocket Initiator Thermally Activated (RITA) Insensitive Munitions (IM) Device for the MK22 Mod 4 Rocket Motor, FUZE 2012

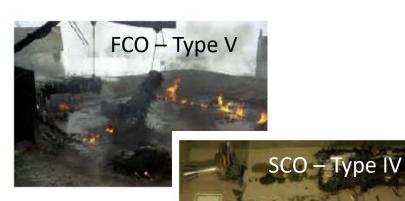
- Intumescent coatings are materials that swell (i.e. intumesce) when subjected to heat, such as from a fire
- They expand to several times their original thickness, forming a foamlike insulating barrier with reduced thermal conductivity thus reducing the heat transfer rate
- Intumescent coatings are designed against FCO threats

 Although intumescent coatings delay munitions' reaction, they generally do not make this reaction less violent!

 \rightarrow used in association with other mitigation devices/strategies (e.g. apply intumescent coating everywhere except on one strip – bare strip - along the axis)

Outer thermal Insulation thickness (mm)	Outer thermal insulation weight (kg)	Bare strip width (mm)	Initial temperature (°C)	Reaction (Type)	Time before reaction (s)
0	0	0	15	III	100
0	0	0	40	IV - III	90
0	0	0	70	IV	60

Results on MAGIC 1 for different coating configurations*

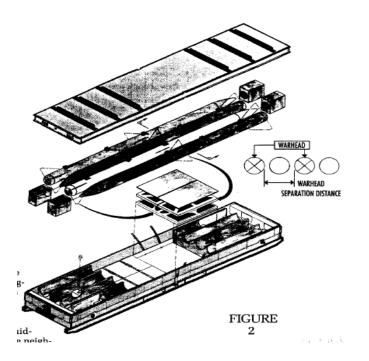

Bouchez, J., Fuel Fire Tests on Rocket Motors With and Without Insulation, Proceedings of the NIMIC Workshop on Cookoff, 1993

4. CASING MATERIALS

Supporting Munitions Safety

- Composite and hybrid (composite & metal) casings have been progressively replacing metal casings to save weight in the munition system
- Their good ability in mitigating mechanical and thermal threats make them good candidates for IM

Steel Strip Laminate: an association of steel strips and adhesive resin

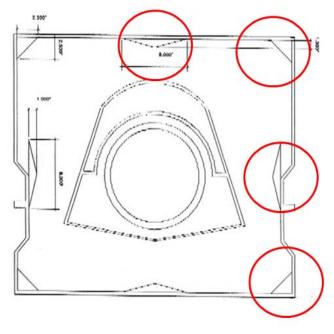

IM Tests on the ESSM Motor featuring a carbon fiber reinforced composite material*
 BI – Type V

*Tenden, S., Fossumstuen, K., IM Improvement of Rocket Motor by Composite Case, Nammo Raufoss. Presented at the NATO RTO Applied Vehicle Technology (AVT) Panel Meeting in Aalborg, Denmark, September 2002

• These mitigation technologies are especially designed against mechanical threats that may occur during storage or transportation

Head to tail arrangement Example below with the AMRAAM container¹

¹Raevis, J., Insensitive Munitions Protection for the AMRAAM Missile Container, 1993


Unclassified / Unlimited Distribution

²Lobdell S.K., SMERF code analysis to examine the effect of diverters to prevent Sympathetic Reaction into JASSM shipping containers, IMEMTS, 1998

10

Diverters

Example below with the JASSM shipping container²

Even if no SRM featuring a bore mitigant has been yet qualified for in-service systems, this is considered as a promising technology against BI or FI threats. Indeed, this technology may prevent Burn to Violent Reaction transitions in SRMs.

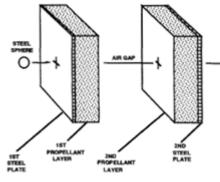
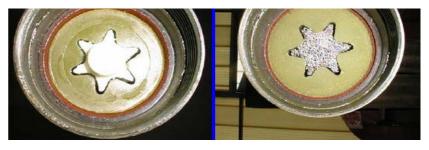



FIG. 1. Planar Rocket Motor Test Model.

TABLE II. Planar Model Test Results.							
Test No.	Propellant	Air Gap Width, in Material		Impact Vel., fVs	Reaction		
1	HEP-2	1.5	Air	3,970	detonation upon debris bubble impact		
2	HEP-2	0.75	Foam	4,301	no reaction		
3	HEP-2	1.5	Foam	4,121	no reaction		
4	HEP-2	2.25	Foam	4,173	no reaction		
5	HEP-2	1.5	Foam	3,084	no reaction		
6	XLDB	1.5	Air	3,780	detonation upon debris bubble impact		
7	XLDB	1.5	Foam	3,980	no reaction		

Finnegan, S, DeMay, S., Pringle, J., Heimdahl, O., Dimaranan, L., Smith, A., Use of Polymeric Foam Inserts for Mitigation of Impact-Induced Reactions in Solid Rocket Motors with A Center-Perforated Grain Design, 1994

LSRM Response to Bullet impact (STANAG 4241 ; 12.7mm P, 850m/s)

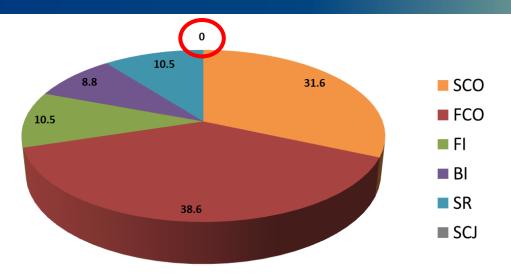
Test label	Metal	Blastove	Response		
	fragments	at 10 m (hPa)	at 15 m (hPa)	Туре	
Reference	3 tragments up to 50 m	28		N	
Reference withighter	5 fragments up to 45 m	33	19	IV	
Hybridecase	6 tragments up to 10 m		13	N	
Weakenedicase	10 tragments up to 65 m	26		N	
Reference & Aluminium foarn	6 tragments up to 12 m	27	20	N	
Retence &	5 fragments up to 7 m	23	12	v	
PEI Foam	2 fragments on place	22	11	v	

Unclassified / Unlimited Distribution

Le Roy, M., Zanelli, D., Roziere, J-M., A Concept to Mitigate the Rocket Motor Response at Impact, IMEMTS, 2001

11

Supporting Munitions Safety


The advantages and drawbacks for the 5 mitigation families found during this review are gathered here below

IM Family	Threats	Advantages	Drawbacks
Passive Venting	FCO, SCO, BI,	Possibility to set the	Useless against SCO if used alone
Devices	FI	operating temperature	Reliability level could be increased
Active Mitigation	FCO, SCO	Possibility to set the operating temperature	Use of EM adds safety issues Generally requires a combination of mitigation technologies
Intumescent coating	FCO	Ease of implementation Low cost	Requires surface pre-treatment Poor robustness Increased weight and diameter
Casing materials	FCO, BI, FI, (SR)	No additional part	Specific design of the case Relative high cost Not applicable for all types of missiles Not likely to respond under SCO
Packaging Barrier Arrangement	BI, FI, SR	Retrofittable for an existing munition	Requires a combination of IM technologies Increased weight and volume of packaged munitions

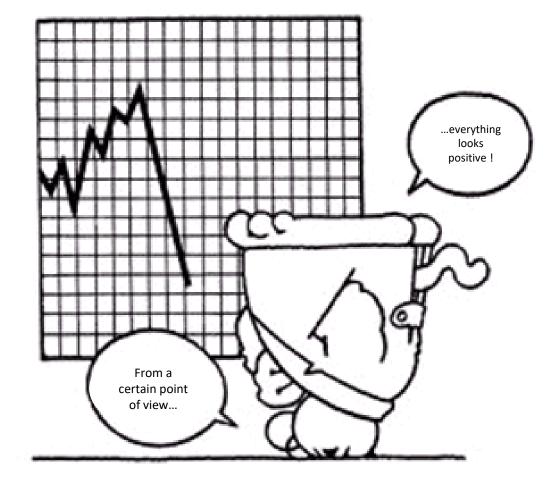
ANALYSIS OF THIS WORK

Supporting Munitions Safety

→ About 70 % of the existing mitigation technologies for SRMs are designed against thermal threats (FCO and/or SCO) although the impact threats (BI, FI, SR and SCJ) are considered as a critical issue for rocket motors, especially in the case of minimum smoke ones:

	IM Signature					
Rocket Motor Type	FCO	SCO	BI	FI	SR	SCJ
Reduced Smoke	IV	I-IV	IV	IV	Pass	Ш
/Smokey	ĨV	1-1 V	ΙV	IV	Fass	
Min Smoke	IV	I-IV	I-IV		1-111	

 \rightarrow No existing mitigation technique against SCJ threats for SRMs


CONCLUSIONS

- Promising ways are existing to reduce or prevent high reaction levels from Solid Rocket Motors
- The review recently done by MSIAC on this topic revealed a total of 53 mitigation technologies, sorted into 5 families:
 - Passive Venting Devices
 - Active Mitigation Systems
 - Intumescent Coatings
 - Casing Materials
 - Packaging Barrier Arrangement
- These mitigation technologies are mostly designed against thermal threats (SCO, FCO) although mechanical threats remain a critical issue for SRMs, especially minimum smoke SRMs
- As a perspective, a summer project will be conducted in 2018 on mitigation technologies for warhead. The outputs from these summer projects will eventually result in an exhaustive and up-to-date online database of mitigation technologies available for the overall munition system. Coming soon in MTM...

Supporting Munitions Safety

