

Supporting Member Nations in the Enhancement of their Munitions Life Cycle Safety

Qualification and Energetic Materials Challenges

IMEMTS

Portland, OR, USA

23rd – 27th April 2018

Dr Matthew Andrews TSO Energetic Materials +32.2.707.5630 m.andrews@msiac.nato.int

1

- Introduction
- MSIAC Workshops The Repeating Issue

Multiple materials present in munitions Visualising the bulk engineering materials in property space (ρ vs ε) <u>https://www.grantadesign.com/products/ces/find.htm</u>

Density (kg/m^3)

10

10000

- - MSIAC Material Properties Data & Modelling

Supporting Munitions Safety

- NIMIC/MSIAC workshops
 - Cook Off
 - Shaped Charge Jet
 - Fragment Impact
 - XDT
 - Sympathetic Reaction
- Gaps highlighted

Models

- Software exchange (1993)
- Lack of input conditions (1992)
- Improve models through collaboration (2004)

Material Characterisation - Mechanical

- Requirement for high strain rate properties (1992)
- Strain rates at temperature and pressures (2000)

Material Characterisation - Thermal

- Data needed at elevated temperatures (1993)
- Collaborative database on energetic & inert material properties (2004)
- Prioritise and identify standardised material data sets for SCJ (2014) and thermal (2016)
- Few explosives have all experimentally determined observables¹
 Peterson J. R., Wight, C. A. "An Eulerian-Lagrangian Computational Model for Deflagration and Detonation of High Explosives", (2012), 159, 2491-2499.
- Why?
 - Improved models
 - Technology provides wider access to capability (Moore's Law)
 - No data collection (needs don't match requirements)

What types of parameters

Physical	Chemical	Thermal	Mechanical
State (s, l, g)	Enthalpy of formation (kJ mol ⁻¹)	Thermal conductivity (W g ⁻¹ .K ⁻¹)	Tensile strength (MPa)
Density (g cm⁻³)	Enthalpy of combustion (kJ mol ⁻¹)	CTE (μm m ⁻¹)	Compressive strength (MPa)
Molecular weight (g mol ⁻¹)	Enthalpy of detonation (kJ mol ⁻¹)	Specific heat capacity (J g ⁻¹ .K ⁻¹)	Complex modulus
Melting point (°C)	Solubility (mg L ⁻¹)		
Boiling point (°C)			
Decomposition temperature (°C)			
Hazard	Shock	Performance	
Impact (J)	Gap (GPa)	Detonation velocity (km s⁻¹)	
Friction (N)	Shock velocity (km s ⁻¹)	Detonation pressure (GPa)	
ESD (J)	Particle velocity (km s⁻¹)	Critical diameter (mm)	
	Run distance (mm)	Gurney energy (kJ kg ⁻¹)	

What are the challenges?

- Multiple materials present within munitions
 - Focus on energetic materials (this presentation)
- Understanding required across all scales
 - Material properties (physical, chemical, mechanical) to system response
- From single molecule to warhead
 - Scale 10 orders of magnitude (nm to m)
 - Mass 6 orders of magnitude (mg to kg)
- 1. Luscher, D. J. et al, Crystals 2017, 7(5), 138
- 2. Heller, A. Science & Technology Review 2009, 4-10
- 3. Price, D. IMEMTS, **2010**,
- 4. Kopp, C. AGM-84E SLAM, **1988**

Current Situation - Munition

- Testing focussed on performance and safety in storage, transport and service
 - STANAG 4123 / UN Hazard Classification
 - AOP-15 / Safety & Suitability for Service
 - STANAG 4439 / Insensitive Munitions
- Criteria for tests can be binary usually pass/fail
 - Limited number of tests
 - High costs
- Reliance on 'whole body of evidence' for assessment

Current Situation - Sub-scale

- Experiments performed to elucidate response to a hazard
- Some tests determine scientific understanding whilst other provide pass/fail
 - Friability

MSIAC

- EMTAP 36 (UK Fragment Impact)
- All results are compared against existing EM knowledge
- Difficult to use information for prediction of munition response

Qualification

Supporting Munitions Safety

- Development cycle no requirement to fully characterise materials
- Testing focussed on performance and safety
- AOP-7
 - Qualification for inclusion of energetic material in a military munition
- Hazard Classification
 - Assessment for transportation
- Material Safety Data Sheets
 - Some physical and chemical properties

Known Issues EM down selection based on performance

Supporting Munitions Safety

AOP-7

Qualification of new EM based on assessment of safety and performance

- Agreed minimum data set
- Whether the EM characteristics change during the lifecycle
- Information on the chemical and physical properties <u>shall</u> be provided
- Compliance with National H&S requirements <u>shall</u> be provided
 - MSDS
 - > EHDS
- Shall
 - Can be interpreted as not mandated

- Chemical, Physical and Mechanical Properties:
 - Stability & Thermal Characterization, Variation of Properties with Age, Compatibility, Density, Melting Point, Thermal Characterisation, Glass Transition Point and Mechanical/Rheological Properties
- Hazard Assessment
 - Ignition Temperature, Explosive Response when Ignited (Confined and Unconfined), Electrostatic Discharge, Impact, Friction, and Shock
- Performance Assessment:
 - Detonation Velocity and Critical
 Diameter
- Those indicted in bold are mandatory qualification data or properties

Qualification Program

Supporting Munitions Sujety		
Category	Test Performed	Criteria
Stability Characterisation	Vacuum Thermal Stability	< 2 cm³ gas
	Thermal Stability	No change
Thermal Characterisation	Thermo gravimetric analysis	
	Self Heating (onset)	
	Compatibility	< 2 cm³ gas
Ignition Temperature	Woods Metal Bath	
	Henkin Time to Explosion	
	Critical Temperature	> 82 °C
	1-L Cook Off	
Explosive Response	Variable Confinement (SCO)	Deflagration or less
	Variable Confinement (FCO)	Deflagration or less
	Small Scale Burn	Less than explosion
Sensitivity Tests	ESD	No reaction at 0.25 J
	Impact	
	Friction	> 96 N
	Shock Sensitivity	
	Cap Test	
Chemical, Physical, Mechanical	CTE	
	Density	
	Growth	1 %
	Exudation	0.1 %
	Young's Modulus	
	Compressive Strength	
	Strain @ Max Stress	
	Cube Cracking	No fissures
Variation with Age	Ageing protocol	
Toxicity Evaluation	MSDS	
Performance Properties	Detonation Velocity	
	Dent Depth	
	Explosivity of Dust	
	Critical Diameter	

- US Example
 - IMX-104
 qualification
 - Zunino et al (IMEMTS 2012)
- Greater testing requirements than AOP-7 minimum
- Tests
 - Included chemical & physical parameters
- Gaps
 - Not reported
 - · C_P
 - Wedge

Material Safety Data Sheet

Supporting Munitions Safety

- **Global Harmonised System**
 - EU requirement CLP (EU1272/2008) •
 - Information gathered by manufacturer for • Material Safety Data Sheet (MSDS)
 - 16 sections including Hazards, Transport and
- Chemical & Physical Properties
 - Section 9
 - No consistency in reported information
 - From 0/20 to 18/20 >
 - Data usually only gathered at one temperature and/or pressure
 - 25°C (not consistent)
 - 133.3 hPa (also not consistent) \succ
- So how can we measure the parameters?

SECTION 9: Physical and chemical properties

9.1	Information on basic physical and chemical properties						
	a)	Appearance	Form: crystalline Colour: light yellow				
	b)	Odour	No data available				
	c)	Odour Threshold	No data available				
	d)	pН	No data available				
	e)	Melting point/freezing point	Melting point/range: 67 - 70 °C				
	f)	Initial boiling point and boiling range	No data available				
	g)	Flash point	155.0 °C - closed cup				
	h)	Evaporation rate	No data available				
	i)	Flammability (solid, gas)	No data available				
	j)	Upper/lower flammability or explosive limits	No data available				
	k)	Vapour pressure	133.3 hPa at 157.7 ℃ 1.3 hPa at 102.7 ℃				
	I)	Vapour density	No data available				
	m)	Relative density	No data available				
	n)	Water solubility	No data available				
	o)	Partition coefficient: n- octanol/water	No data available				
	p)	Auto-ignition temperature	No data available				
	q)	Decomposition temperature	No data available				
	r)	Viscosity	No data available				
	s)	Explosive properties	No data available				
	t)	Oxidizing properties	No data available				
9.2	Oth No	er safety information data available					

SECTION 40. Stability and markinity

1. Sigma-Aldrich "2,4-Dinitrotoluene", (2015), Safety Data Sheet.

9

Supporting Munitions Safety

Whole Body of Evidence

MSIAC Unclassified: Distribution Unlimited

Understand munition response to key abnormal threats include

- Thermal
- Shock
- Impact
- Discrete data sets available
 - Relates to specific tests
- Therefore we use
 - Models to test our understanding...but
 - Do we have the right information

Models

Greater reliance on modelling for

Simulation •

Supporting Munitions Safety

- Safety assessment
- Ultimate aim \rightarrow
 - Prediction

Development of computational tools for simulating abnormal thermal events (e.g.)

- Critical Temperature¹ •
- ALE3D²
 - ► IINI
- Eularian & Lagrangian³
 - University of Utah >
- Multiple codes
 - SNI
- Thermal Hazards
- Time to ignition
 - Thermal & physical parameters
 - Chemistry ٠
- Confinement complex 1. Rogers, R. N. Thermochimica Acta, (1975), 11, 131-139
- 2. McClelland, M. A., Tran, T. D., Cunningham, B. J., Weese, R. K., Maienschein, J. L.. "Cookoff Response of PBXN-109: Material Characterization and ALE3D Model", (2000), JANNAF, Monterey, CA.
- 3. Peterson J. R., Wight, C. A. "An Eulerian-Lagrangian Computational Model for Deflagration and Detonation of High Explosives", (2012), 159, 2491-2499.

The HERMES model components Development of thermal violence cookoff tests at AWF

Critical temperature¹

Benefits of Modelling

Clark, K. (2016), SoCO, Atlanta

- Assess interdependence of, and sensitivity to changes in, variables
 - Size
 - Volume
 - Materials
 - External conditions
- Test mechanistic understanding
- Increases confidence in observed behaviour
- Provides insight into reaction that can not always be observed experimentally
 - Time to reaction
 - Location of reaction
 - Reaction growth
 - But cannot reliably predict reaction violence

Modelling Requirements

Supporting Munitions Safety

- Requirement to populate model(s) with experimental data as $[f_n(T)]$ and $[f_n(P)]$
 - Coefficient of Thermal Expansion¹
 - Specific Heat Capacity
 - Solid phase¹
 - Gaseous phase²
 - Shear Modulus¹
 - Bulk Modulus¹
 - Reaction kinetics, detonation¹
 - Condensed Phase Activation Energy²
- Good models need
 - Well defined experiments
 - Information on the boundary conditions
 - An iterative development cycle supported by progressive experimental design and testing programme
- Discussion
 - Mismatch in requirement to obtain data
- McClelland, M. A., Tran, T. D., Cunningham, B. J., Weese, R. K., Maienschein, J. L.. "Cookoff Response of PBXN-109: Material Characterization and ALE3D Model", (2000), JANNAF, Monterey, CA.
- 2. Peterson J. R., Wight, C. A. "An Eulerian-Lagrangian Computational Model for Deflagration and Detonation of High Explosives", (**2012**), 159, 2491-2499.

Temperature -60 °C to 500 °C (model dependent) Pressure 0.1 MPa to 50 GPa (model dependent)

- Chemical & Physical Properties
 - MSDS
 - Density, vapour pressure (if recorded)
 - AOP-7
 - Onset of decomposition; Ageing includes mechanical properties
- Parameters still required
 - Function of temperature (e.g. -60 to 120°C material dependent)
 - Determine other factors from these selected parameters e.g. critical temperature, enthalpy of formation

- Chemical & Physical Properties
 - MSDS
 - Density, vapour pressure (if recorded)
 - AOP-7
 - Onset of decomposition; Ageing includes mechanical properties
- Parameters still required
 - Function of temperature (e.g. -60 to 120°C material dependent)
 - Determine other factors from these selected parameters e.g. critical temperature, enthalpy of formation

Thermal		Units				
Vapour pressure	P _{vap}	hPa				
Heat Capacity	Cp	J g-1.°C-1				
Thermal Conductivity	λ	W cm-1.°C-2	1			
Coefficient of Thermal						
Expansion	CTE	µm m-1.°C-∶	1			
A ation for every	-	lil mark				
Activation Energy	Ea	KJ MOI-1				
Physical						
Density	ho	g cm-3				
Enthalpy of Combustion	ΔH_c	kJ mol-1	ASTM D 4809	liquid hydrocarbon fuels	Bomb Calorimetry	17
			1	พอเสีย อาเมืองและ อางแบบแบบ อาแกและ		

- Chemical & Physical Properties
 - MSDS
 - Density, vapour pressure (if recorded)
 - AOP-7
 - Onset of decomposition; Ageing includes mechanical properties
- Parameters still required
 - Function of temperature (e.g. -60 to 120°C material & model dependent)
 - Determine other factors from these selected parameters e.g. critical temperature, enthalpy of formation

Thermal		Units	Existing Methods	Notes	Equipment	
Vapour pressure	P _{vap}	hPa	ASTM E 1782		Differential Scanning Calorime Differential Thermal Analysis	try or
Heat Capacity	Cp	J g-1.°C-1	ASTM E 1269		Differential Scanning Calorime	try
Thermal Conductivity	λ	W cm-1.°C-1	ASTM E 1225		Longitudinal Heat Flow	
			ASTM C 518		Heat Flow Meter Apparatus	
Coefficient of Thermal Expansion	CTE	µm m-1.°C-1	ASTM E 831 STANAG 4525	Thermochemical analysis	Thermal Mechanical Analyser	(TMA)
			ASTM E 2716		Sinusoidal Modulated Tempera Differential Scanning Calorime	ature try
Activation Energy	Ea	kJ mol-1	ASTM E 1614 STANAG 4147		Thermogravimetry Using Ozaw Flynn/Wall Method	ıa/
			ASTM E 698	Thermally unstable materials	Differential Scanning Calorime	try
Physical						
Density	ρ	g cm-3	ASTM D 792		Displacement	
			ASTM D 1217		Pycnometry	
Enthalpy of Combustion	ΔH_c	kJ mol-1	ASTM D 4809	liquid hydrocarbon fuels	Bomb Calorimetry	18

Supporting Munitions Safety

Discussion

Data

- Capability exists to better characterise materials
- Request for chemical, physical and mechanical information is usually much later in the qualification process (type qualification)
- Propose at an earlier stage in development (pre-AOP-7)
- Modelling
 - Modelling is being used throughout munition development
 - Design
 - Safety assessment
 - Prediction
 - Access to codes and models across most MSIAC nations
 - Capability to run simulations is now faster and cheaper
- Benefits
 - Reduced time in development
 - Greater insight into internal behaviour
 - Improved assessment of time to reaction
 - Well-posed models enable easer design modifications
 - Increased confidence in assessed response level
 - Helps assess programme risk

Stakeholders

Manufacturers Design Authorities Safety Authorities Modellers Experimentalist

Supporting Munitions Safety

How is MSIAC helping?

ŝ Enabling exchange of information Workshops • Support NATO Generating guidance on models Policy, Advice and Review and methodology • L-195 (Babcock & van der Voort) L-213 (Babcock) Answering Data reviews more than 2600 Technical L-198 (Andrews) \bigcirc Training Repository for data Country visit Fellow and Students **Energetic Materials Compendium** (EMC) **Developing models** TEMPER Promoting discussion WE NE

Acknowledgements

Supporting Munitions Safety

Co-author: MSIAC Team:

Wade Babcock Dr Ernie Baker, Christelle Collet, Martin Pope, Dr Michael Sharp, Martijn van der Voort