Qualification and Energetic Materials Challenges

IMEMTS
Portland, OR, USA
23rd – 27th April 2018

Dr Matthew Andrews
TSO Energetic Materials
+32.2.707.5630
m.andrews@msiac.nato.int
Outline

- Introduction
- MSIAC Workshops – The Repeating Issue
- Materials in Munitions
- Models & Benefits
- Current Testing Requirements
- How to Move Forward

Multiple materials present in munitions

Visualising the bulk engineering materials in property space (ρ vs ϵ)

https://www.grantadesign.com/products/ces/find.htm
Supporting Munitions Safety

Material Properties Data & Modelling

- NIMIC/MSIAC workshops
 - Cook Off
 - Shaped Charge Jet
 - Fragment Impact
 - XDT
 - Sympathetic Reaction
- Gaps highlighted

- Few explosives have all experimentally determined observables\(^1\)
- Why?
 - Improved models
 - Technology provides wider access to capability (Moore’s Law)
 - No data collection (needs don’t match requirements)

What types of parameters

<table>
<thead>
<tr>
<th>Physical</th>
<th>Chemical</th>
<th>Thermal</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>State (s, l, g)</td>
<td>Enthalpy of formation (kJ mol(^{-1}))</td>
<td>Thermal conductivity (W g(^{-1}).K(^{-1}))</td>
<td>Tensile strength (MPa)</td>
</tr>
<tr>
<td>Density (g cm(^{-3}))</td>
<td>Enthalpy of combustion (kJ mol(^{-1}))</td>
<td>CTE (μm m(^{-1}))</td>
<td>Compressive strength (MPa)</td>
</tr>
<tr>
<td>Molecular weight (g mol(^{-1}))</td>
<td>Enthalpy of detonation (kJ mol(^{-1}))</td>
<td>Specific heat capacity (J g(^{-1}).K(^{-1}))</td>
<td>Complex modulus</td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>Solubility (mg L(^{-1}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decomposition temperature (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazard

<table>
<thead>
<tr>
<th>Shock</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact (J)</td>
<td>Detonation velocity (km s(^{-1}))</td>
</tr>
<tr>
<td>Friction (N)</td>
<td>Detonation pressure (GPa)</td>
</tr>
<tr>
<td>ESD (J)</td>
<td>Critical diameter (mm)</td>
</tr>
<tr>
<td>Run distance (mm)</td>
<td>Gurney energy (kJ kg(^{-1}))</td>
</tr>
</tbody>
</table>
What are the challenges?

- Multiple materials present within munitions
 - Focus on energetic materials (this presentation)
- Understanding required across all scales
 - Material properties (physical, chemical, mechanical) to system response
- From single molecule to warhead
 - Scale – 10 orders of magnitude (nm to m)
 - Mass – 6 orders of magnitude (mg to kg)

1. Luscher, D. J. et al, Crystals 2017, 7(5), 138
2. Heller, A. Science & Technology Review 2009, 4-10
4. Kopp, C. AGM-84E SLAM, 1988
Current Situation - Munition

- Testing focussed on performance and safety in storage, transport and service
 - STANAG 4123 / UN Hazard Classification
 - AOP-15 / Safety & Suitability for Service
 - STANAG 4439 / Insensitive Munitions

- Criteria for tests can be binary - usually pass/fail
 - Limited number of tests
 - High costs

- Reliance on ‘whole body of evidence’ for assessment
Experiments performed to elucidate response to a hazard
Some tests determine scientific understanding whilst other provide pass/fail
- Friability
- EMTAP 36 (UK Fragment Impact)
All results are compared against existing EM knowledge
Difficult to use information for prediction of munition response
Qualification

- Development cycle – no requirement to fully characterise materials
- Testing focussed on performance and safety
- AOP-7
 - Qualification for inclusion of energetic material in a military munition
- Hazard Classification
 - Assessment for transportation
- Material Safety Data Sheets
 - Some physical and chemical properties

Known Issues
EM down selection based on performance
Qualification of new EM based on assessment of safety and performance

- Agreed minimum data set
- Whether the EM characteristics change during the lifecycle
- Information on the chemical and physical properties *shall* be provided
- Compliance with National H&S requirements *shall* be provided
 - MSDS
 - EHDS

Shall

- Can be interpreted as not mandated

Chemical, Physical and Mechanical Properties:
- **Stability & Thermal Characterization**, Variation of Properties with Age, **Compatibility**, Density, Melting Point, Thermal Characterisation, Glass Transition Point and **Mechanical/Rheological Properties**

Hazard Assessment

- **Ignition Temperature**, Explosive Response when Ignited (Confined and Unconfined), Electrostatic Discharge, Impact, Friction, and Shock

Performance Assessment:

- Detonation Velocity and **Critical Diameter**

Those indicted in bold are mandatory qualification data or properties
Qualification Program

<table>
<thead>
<tr>
<th>Category</th>
<th>Test Performed</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability Characterisation</td>
<td>Vacuum Thermal Stability</td>
<td>< 2 cm³ gas</td>
</tr>
<tr>
<td></td>
<td>Thermal Stability</td>
<td>No change</td>
</tr>
<tr>
<td>Thermal Characterisation</td>
<td>Thermo gravimetric analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self Heating (onset)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compatibility</td>
<td>< 2 cm³ gas</td>
</tr>
<tr>
<td>Ignition Temperature</td>
<td>Woods Metal Bath</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Henkin Time to Explosion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Temperature</td>
<td>> 82 °C</td>
</tr>
<tr>
<td></td>
<td>1-L Cook Off</td>
<td></td>
</tr>
<tr>
<td>Explosive Response</td>
<td>Variable Confinement (SCO)</td>
<td>Deflagration or less</td>
</tr>
<tr>
<td></td>
<td>Variable Confinement (FCO)</td>
<td>Deflagration or less</td>
</tr>
<tr>
<td></td>
<td>Small Scale Burn</td>
<td>Less than explosion</td>
</tr>
<tr>
<td>Sensitivity Tests</td>
<td>ESD</td>
<td>No reaction at 0.25 J</td>
</tr>
<tr>
<td></td>
<td>Impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friction</td>
<td>> 96 N</td>
</tr>
<tr>
<td></td>
<td>Shock Sensitivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cap Test</td>
<td></td>
</tr>
<tr>
<td>Chemical, Physical, Mechanical</td>
<td>CTE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growth</td>
<td>1 %</td>
</tr>
<tr>
<td></td>
<td>Exudation</td>
<td>0.1 %</td>
</tr>
<tr>
<td></td>
<td>Young’s Modulus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compressive Strength</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strain @ Max Stress</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cube Cracking</td>
<td>No fissures</td>
</tr>
<tr>
<td>Variation with Age</td>
<td>Ageing protocol</td>
<td></td>
</tr>
<tr>
<td>Toxicity Evaluation</td>
<td>MSDS</td>
<td></td>
</tr>
<tr>
<td>Performance Properties</td>
<td>Detonation Velocity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dent Depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explosivity of Dust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Diameter</td>
<td></td>
</tr>
</tbody>
</table>

- **US Example**
 - IMX-104 qualification
 - Zunino et al (IMEMTS 2012)

- **Greater testing requirements than AOP-7 minimum**

- **Tests**
 - Included chemical & physical parameters

- **Gaps**
 - Not reported
 - C_p
 - Wedge
Global Harmonised System
- EU requirement CLP (EU1272/2008)
- Information gathered by manufacturer for Material Safety Data Sheet (MSDS)
- 16 sections including Hazards, Transport and....

Chemical & Physical Properties
- Section 9
- No consistency in reported information
 - From 0/20 to 18/20
- Data usually only gathered at one temperature and/or pressure
 - 25°C (not consistent)
 - 133.3 hPa (also not consistent)

So how can we measure the parameters?
- Understand munition response to key abnormal threats include
 - Thermal
 - Shock
 - Impact

- Discrete data sets available
 - Relates to specific tests

- Therefore we use
 - Models to test our understanding…but
 - Do we have the right information

Development of a scaling hierarchy for cook off hazards
Atwood, A. et al. (2010), IMEMTS, Munich
Models

- Greater reliance on modelling for
 - Simulation
 - Safety assessment
 - Ultimate aim → Prediction

- Development of computational tools for simulating abnormal thermal events (e.g.)
 - Critical Temperature\(^1\)
 - ALE3D\(^2\)
 - LLNL
 - Eularian & Lagrangian\(^3\)
 - University of Utah
 - Multiple codes
 - SNL

- Thermal Hazards
- Time to ignition
 - Thermal & physical parameters
 - Chemistry
 - Confinement - complex

1. Rogers, R. N. Thermochimica Acta, (1975), 11, 131-139
Benefits of Modelling

- Assess interdependence of, and sensitivity to changes in, variables
 - Size
 - Volume
 - Materials
 - External conditions
- Test mechanistic understanding
- Increases confidence in observed behaviour
- Provides insight into reaction that can not always be observed experimentally
 - Time to reaction
 - Location of reaction
 - Reaction growth
 - But cannot reliably predict reaction violence
Modelling Requirements

- Requirement to populate model(s) with experimental data as
 \([f_n(T)]\) and \([f_n(P)]\)
 - Coefficient of Thermal Expansion\(^1\)
 - Specific Heat Capacity
 - Solid phase\(^1\)
 - Gaseous phase\(^2\)
 - Shear Modulus\(^1\)
 - Bulk Modulus\(^1\)
 - Reaction kinetics, detonation\(^1\)
 - Condensed Phase Activation Energy\(^2\)

- Good models need
 - Well defined experiments
 - Information on the boundary conditions
 - An iterative development cycle supported by progressive experimental design and testing programme

- Discussion
 - Mismatch in requirement to obtain data

Methods for Obtaining Parameters

Chemical & Physical Properties
- MSDS
 - Density, vapour pressure (if recorded)
- AOP-7
 - Onset of decomposition; Ageing includes mechanical properties

Parameters still required
- Function of temperature (e.g. -60 to 120°C – material dependent)
- Determine other factors from these selected parameters e.g. critical temperature, enthalpy of formation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour pressure (P<sub>vap</sub>) hPa</td>
<td>ASTM E 1782, Differential Scanning Calorimetry or Differential Thermal Analysis</td>
</tr>
<tr>
<td>Heat Capacity (C<sub>p</sub>) J g<sup>-1</sup>°C<sup>-1</sup></td>
<td>ASTM E 1269, Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>Thermal Conductivity (λ) W cm<sup>-1</sup>°C<sup>-1</sup></td>
<td>ASTM E 1225, Longitudinal Heat Flow Meter Apparatus</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion (CTE) µm m<sup>-1</sup>°C<sup>-1</sup></td>
<td>ASTM E 831, D696, Thermochemical analysis, Thermochemical analysis, Thermal Mechanical Analyser (TMA)</td>
</tr>
<tr>
<td>Activation Energy (E<sub>a</sub>) kJ mol<sup>-1</sup></td>
<td>ASTM E 1614, Thermogravimetry, Using Ozawa/Flynn/Wall Method</td>
</tr>
<tr>
<td>Physical Density (ρ) g cm<sup>-3</sup></td>
<td>ASTM D 792, Displacement, Pycnometry</td>
</tr>
<tr>
<td>Enthalpy of Combustion (ΔH<sub>c</sub>) kJ mol<sup>-1</sup></td>
<td>ASTM D 4809, liquid hydrocarbon fuels, Bomb Calorimetry</td>
</tr>
</tbody>
</table>
Methods for Obtaining Parameters

Supporting Munitions Safety

- Chemical & Physical Properties
 - MSDS
 - Density, vapour pressure (if recorded)
 - AOP-7
 - Onset of decomposition; Ageing includes mechanical properties

- Parameters still required
 - Function of temperature (e.g. -60 to 120°C – material dependent)
 - Determine other factors from these selected parameters e.g. critical temperature, enthalpy of formation

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour pressure</td>
<td>P_{vap} hPa</td>
</tr>
<tr>
<td>Heat Capacity</td>
<td>C_p J g^{-1} °C^{-1}</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>λ W cm^{-1} °C^{-1}</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>CTE µm m^{-1} °C^{-1}</td>
</tr>
<tr>
<td>Activation Energy</td>
<td>E_a kJ mol^{-1}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>ρ g cm^{-3}</td>
</tr>
<tr>
<td>Enthalpy of Combustion</td>
<td>ΔH_c kJ mol^{-1}</td>
</tr>
</tbody>
</table>

Methods for Obtaining Parameters

<table>
<thead>
<tr>
<th>Notes</th>
<th>Thermal Units</th>
<th>Equipment</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vapour pressure</td>
<td>ASTM E1782</td>
<td>Differential Scanning Calorimetry or Differential Thermal Analysis</td>
</tr>
<tr>
<td></td>
<td>Heat Capacity</td>
<td>ASTM E1269</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td></td>
<td>Coefficient of Thermal Expansion</td>
<td>ASTM E831, D696</td>
<td>Thermochemical analysis Thermal Mechanical Analyser (TMA) ASTM E2716</td>
</tr>
<tr>
<td></td>
<td>Activation Energy</td>
<td>ASTM E1614</td>
<td>Thermogravimetry Using Ozawa/Flynn/Wall Method ASTM E698</td>
</tr>
<tr>
<td></td>
<td>Physical Density</td>
<td>ASTM D792</td>
<td>Displacement ASTM D1217, Pycnometry</td>
</tr>
<tr>
<td></td>
<td>Enthalpy of Combustion</td>
<td>ASTM D4809</td>
<td>liquid hydrocarbon fuels Bomb Calorimetry</td>
</tr>
</tbody>
</table>
Methods for Obtaining Parameters

Chemical & Physical Properties
- **MSDS**
 - Density, vapour pressure (if recorded)
- **AOP-7**
 - Onset of decomposition; Ageing includes mechanical properties

Parameters still required
- Function of temperature (e.g. -60 to 120°C – material & model dependent)
- Determine other factors from these selected parameters e.g. critical temperature, enthalpy of formation

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Units</th>
<th>Existing Methods Notes</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour pressure</td>
<td>P_{vap}</td>
<td>hPa</td>
<td>ASTM E 1782</td>
</tr>
<tr>
<td>Heat Capacity</td>
<td>C_p</td>
<td>J g⁻¹°C⁻¹</td>
<td>ASTM E 1269</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>λ</td>
<td>W cm⁻¹°C⁻¹</td>
<td>ASTM E 1225</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion</td>
<td>CTE</td>
<td>µm m⁻¹°C⁻¹</td>
<td>ASTM E 831 STANAG 4525</td>
</tr>
<tr>
<td>Activation Energy</td>
<td>E_a</td>
<td>kJ mol⁻¹</td>
<td>ASTM E 2716</td>
</tr>
<tr>
<td>Density</td>
<td>ρ</td>
<td>g cm⁻³</td>
<td>ASTM D 792</td>
</tr>
<tr>
<td>Enthalpy of Combustion</td>
<td>ΔH_c</td>
<td>kJ mol⁻¹</td>
<td>ASTM D 4809 liquid hydrocarbon fuels</td>
</tr>
</tbody>
</table>

Notes:
Data
- Capability exists to better characterise materials
- Request for chemical, physical and mechanical information is usually much later in the qualification process (type qualification)
- Propose at an earlier stage in development (pre-AOP-7)

Modelling
- Modelling is being used throughout munition development
 - Design
 - Safety assessment
 - Prediction
- Access to codes and models across most MSIAC nations
- Capability to run simulations is now faster and cheaper

Benefits
- Reduced time in development
- Greater insight into internal behaviour
- Improved assessment of time to reaction
- Well-posed models enable easier design modifications
- Increased confidence in assessed response level
- Helps assess programme risk

Stakeholders
Manufacturers
Design Authorities
Safety Authorities
Modellers
Experimentalist
How is MSIAC helping?

- Enabling exchange of information
 - Workshops
- Generating guidance on models and methodology
 - L-195 (Babcock & van der Voort)
 - L-213 (Babcock)
- Data reviews
 - L-198 (Andrews)
- Repository for data
 - Energetic Materials Compendium (EMC)
- Developing models
 - TEMPER
- Promoting discussion
Acknowledgements

Co-author: Wade Babcock
MSIAC Team: Dr Ernie Baker, Christelle Collet, Martin Pope, Dr Michael Sharp, Martijn van der Voort