THE UNKNOWN DETONATION TRANSITION (XDT) MECHANISMS ASSOCIATED WITH DAMAGED ROCKET PROPELLANT IMPACTING A SURFACE: UNDERSTANDING AND APPLICATIONS TO IM

Distribution Statement A. Approved for public release. Distribution is unlimited.

Presented by:
Dr. Mark Pfeil
Dr. Jamie Neidert, Jessica Stanfield, and David Huebner

U.S. Army Aviation and Missile Research, Development, and Engineering Center

April 26, 2018
Deliver collaborative and innovative aviation and missile capabilities for responsive and cost-effective research, development and life cycle engineering solutions.
Who is AMRDEC?

- Core Competencies:
 - Life Cycle Engineering
 - Research, Technology Development and Demonstration
 - Design and Modification
 - Software Engineering
 - Systems Integration
 - Test and Evaluation
 - Qualification
 - Aerodynamics/Aeromechanics
 - Structures
 - Propulsion
 - Guidance/Navigation
 - Autonomy and Teaming
 - Radio Frequency (RF) Technology
 - Fire Control Radar Technology
 - Image Processing
 - Models and Simulation
 - Cyber Security

FY17 Strength:
- ~9,211
- 2,945 Civilian
- 16 Military
- 6,250 Contractor

FY17 Funding:
- $2,904M
- 6% Aviation S&T
- 7% Missile S&T
- 63% Army
- 24% Other

Office Locations:
- AMRDEC HQ, Redstone Arsenal, AL
- Joint Base Langley - Eustis, VA
- NASA Ames - Moffett Field, CA
- Colorado Springs, CO
- Corpus Christi, TX
#1: Readiness

Provide aviation and missile systems solutions to ensure victory on the battlefield today.

#2: Future Force

Develop and mature Science and Technology to provide technical capability to our Army’s (and nation’s) aviation and missile systems.

#3: Soldiers and People

Develop the engineering talent to support both Science and Technology and the aviation and missile materiel enterprise.
• Motors need to pass insensitive munition fragment impact requirements
 – Better understanding of motor reaction needed
• Motors containing 1.1 propellant can detonate via
 – Shock to Detonation Transition (SDT)
 – Unknown Detonation Transition (XDT)
 • More prevalent problem than previously thought
• MSP-1 propellant
 – ABVR web thickness – 1.25 or 2.50 in
 – Cylindrical web thickness – 1.09 or 2.34 in
• Pressure gauges set at a 45° offset
• High speed cameras used to optically record event
• Change from XDT to brief combustion caused by debris cloud porosity
 – Visual break up of cloud correlates to XDT limit

Data from Finnegan et al., Int. J. Impact Eng., 1993.
Upper XDT Limit

XDT – 3976 ft/s

193.5 µs

206.4 µs

197.8 µs

210.7 µs

202.1 µs

215.0 µs

Brief Combustion – 2756 ft/s

193.5 µs

206.4 µs

279.5 µs

283.8 µs

292.4 µs

301.0 µs

309.6 µs

318.2 µs
• The variation with fragment velocity appears to correlate with the amount of material in debris cloud
 – Material in debris cloud \propto kinetic energy of fragment, thickness of propellant, and presented area of fragment
 – More material means longer length required to obtain porosity necessary to mitigate XDT
• Impact of debris cloud appears to cause localized SDT on leading edge of propellant debris cloud
 – Reaction propagates back through debris cloud at the velocity typical of a detonation through highly porous material
• Velocity increases as porosity decreases

XDT – 3976 ft/s
- Decreasing cloud porosity decreases sensitivity to SDT
- Increasing cloud temperature increases sensitivity to SDT
Conclusions

• XDT is likely a prominent detonation mechanism in real rocket motors and needs to be mitigated
• XDT can be controlled by influencing properties of the propellant debris cloud
 – Porosity
 – Temperature
• Mitigation strategies
 – Eliminate cavity
 • Completely solid fuel grain
 • Insert material
 – Design cavity to negate hazards associated with debris cloud
Acknowledgements

- Joint Insensitive Munitions Technology Program –Task 15-2-74
- Technical input
 - Dr. Bradley White and Dr. Keo Springer of Lawrence Livermore National Laboratory
 - Dr. Eric Harstad of Sandia National Laboratories
 - Dr. Malcolm Cook of Atomic Weapons Establishment
 - Kenneth Graham of Aerojet Rocketdyne
 - Benji Staggs/Scott Riley at OATK
 - Dr. Soonyoung Hong of Naval Surface Warfare Center
- AMRDEC support
 - Joey Reed, William Delaney, Ray Klaver, Patrick Parsons, Zachary Hoernschemeyer, and Jeremiah Davidson
AMRDEC Web Site
www.amrdec.army.mil

Facebook
www.facebook.com/rdecom.amrdec

YouTube
www.youtube.com/user/AMRDEC

Twitter
@usarmyamrdec

Public Affairs
AMRDEC-PAO@amrdec.army.mil