STATUS - CRITICAL DIAMETER AND GAP TESTS FOR HAZARD CLASSIFICATION OF SOLID ROCKET MOTORS

Cynthia P. Romo & Dr. Josephine Covino

K.P. Ford, A.D. Farmer, R. Rose
Naval Air Warfare Center Weapons Division, China Lake, California

T.L. Boggs, A.I. Atwood
Naval Systems Incorporated, Ridgecrest, California

Insensitive Munitions and Energetic Materials Technology Symposium
23 – 26 April 2018
Portland, OR

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
• Brief history of propellants
 – How formulations have changed with time
• Development of the gap test
 – Determine transportation and storage hazard classification
• Overview of current test procedures
• Options available to the system developer
 – Strengths and weaknesses of each option
• Facilitate dialogue on methods to improve gap testing
• World War II – Early 1950s: Double-base propellants
 – Small critical diameters
• 1950’s – 1960’s: Composite Propellants
 – AP/Al/binder replaced many NC/NG formulations
 – Critical diameter increased markedly
 • Proliferation of AP based systems
• 1970’s: Improving propellant compositions
 – Adding nitramines to increase specific impulse
 • Range, velocity, and payload
 – Burning rate modifiers
 • Decrease time to target
 – Increased performance – decreased critical diameter
• Shock initiation test (1950)
• Predict hazard from unintentional detonation
 – One explosive exposed to shock
 – Quantify the sensitivity of the material
• Los Alamos National Lab small-scale gap test
• Naval Ordnance Lab large-scale gap test (NOL LSGT)
• Super large-scale gap test (SLSGT)
• AP/Al/binder propellants
 – Critical diameter in multiple feet
 • Project SOPHY: \(d_{cr} \) greater than 62 inches
 – Industry stopped determining critical diameter
 • Hard to find large mechanical shock threat

• Reduce the hazard classification of a system propellant from HD 1.1 to HD1.3
 – Add nitramines until a “go” reaction, then decrease nitramine content until “no-go”

• Larger gap tests needed
• NOL LSGT and newer formulations
 – Could not help characterize large solid rocket motor hazard

• Modification of the Technical Bulletin 700-2
 – UN Test Series 6
 • Used for hazard classification HD1.1, 1.2, 1.3, and 1.4
 • Single package test – UN Test 6 (a)
 • Stack test – UN Test 6 (b)

 – Alternate tests
 • Performed on large solid propellant rocket motors – very expensive
• Shock input into propellant > 280 kbar
 – No attenuator between booster and donor
 – Storage and transportation hazards < 10 kbar
• 16-inch length sample
 – Did not allow shock to decrease to sonic velocity
• Test thick-wall steel-bomb-cased energetic materials
 – ½-inch-thick steel wall not representative of rocket motor cases
 – Greater pressures than shock wave from donor
• No velocity pins, no determination of shock wave velocity
 – Shock wave velocity could help determine “go or “no go”

• Maximum allowable sample diameter: 7 inches
 – Larger critical diameter propellants
 – Inadequate to determine sample’s hazard
1998 TB 700-2: SUGGESTED CHANGES

- Increase sample length
 - From 16-inch to 32-inch
 - Determine if detonation wave decayed

- Incorporate velocity pins
 - 14 pins, 1 inch away from donor

- Comp B conical booster
 - 8-inch by 8-inch cylindrical booster produced significant blast

- Adding an attenuator
 - Between donor and propellant
 - Provide a 70 kbar shock to sample
2012: TB 700-2
• SLSGT suggestions resulted in modifications
 – DDESB document signed by Capt. William Wright, Chairman
• Three options replace section 6-6(c) of 1998 TB 700-2
 – Option 1. Refined SLSGT
 – Option 2. Determine unconfined d_{crit}
 – Option 3. Missile motor diameter
- Refined version of SLSGT
- 32-inch-long sample
- 14 velocity pins
- Either a right circular cylinder or conical booster
- No PMMA attenuator
• Determine Critical Diameter \([\text{A}]\)
• Address confinement thickness concern
 – Test in equivalent confinement to motor case
• Minimum sample diameter [B]
 – 5-inches
 – 150 percent of unconfined critical diameter
• 14 velocity pins minimum
• Attenuation to allow 70-kbar shock
• Similar to Option 2
• Confinement = motor case
• Sample diameter = missile diameter
• Closely recreate original environment an item would be used in
• More applicable to smaller tactical missiles
• Much less cost effective for larger diameter solid rocket motors
• Gap research continued
• Role of confinement
 – Determine effects of different confinement
 – AP/Al/HTPB propellant 12-inch diameter sample
 – Different case materials
 – Different case wall thickness
 • No confinement
 • Schedule 40 PVC pipe
 • Schedule 80 PVC pipe
 • 0.37-inch aluminum wall thickness
 • 0.0687-inch aluminum wall thickness
 • ½-inch thick steel wall thickness
CONFINEMENT EFFECTS

Lindfors, et al. AP/Al/HTPB Propellant

<table>
<thead>
<tr>
<th>Time/Case (µs)</th>
<th>Unconfined Propellant (ρ = 1.850)</th>
<th>12.75” x 0.5” Steel Case Rho = 7.90</th>
<th>Schedule 40 PVC Rho = 1.376</th>
<th>Schedule 80 PVC Rho = 1.376</th>
<th>12.75” x 0.375” Aluminum Rho = 2.703</th>
<th>12.75” x 0.687” Aluminum Rho = 2.703</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>103.2</td>
<td>103.4</td>
<td>98.5</td>
<td>99.4</td>
<td>99.3</td>
<td>100.1</td>
</tr>
<tr>
<td>125</td>
<td>111.2</td>
<td>139.4</td>
<td>109.2</td>
<td>109.32</td>
<td>110.3</td>
<td>119.0</td>
</tr>
<tr>
<td>150</td>
<td>118.1</td>
<td>186.8</td>
<td>115.0</td>
<td>115.4</td>
<td>124.6</td>
<td>141.3</td>
</tr>
<tr>
<td>175</td>
<td>137.4</td>
<td>312.2</td>
<td>133.4</td>
<td>132.4</td>
<td>162.9</td>
<td>194.5</td>
</tr>
</tbody>
</table>

- ½-inch steel case
 - Highest confinement
 - Highest pressure
 - Pressure at 175 µsec = 312.2 kbar
 - Original shock wave pressure = 280 kbar
• Studies of four different propellants
• Modified DYNA-2D predictions vs experimental data
 – Zero cards vs 50 cards
 • HD 1.1 vs HD 1.3
• Reduce size of donor – no apparent effect on walls
• Confinement change
 – From ½-inch steel walls to PVC
 • PVC impedance < steel impedance
 • Rocket motor case confinement
 – Reproduce observed gap test results
 – Model could be a viable tool in designing alternate gap test configurations
• Gap test continues to evolve
 – Solid rocket propellants < shock sensitive
• Option 1 may not be the most appropriate test
 – Confinement can vary reaction levels
 – Duration of the input pulse can affect reaction of material
 • Longer duration, lower pressure pulse – sufficient to initiate sample
• Understanding properties of the system is important
 – Critical diameter
 – Casing influence on shock sensitivity of material
• Which test to use?
 – Understand the system
• Some problems are known
 – Solutions have yet to be found
• Additional work is needed
 – Experimental and analytical

It is important to consult the Service Hazard Classifier early in the process when determining which test standard to implement during any program development effort.
CURRENT WORK

• Extensive literature review
 – Use and evolution of critical diameter and gap tests through the years

• Papers are being reviewed and summarized
 – Hazard Classification
 – TB 700-2
 – Critical diameter
 – Gap tests
 – Alternate tests

The authors are soliciting papers in these areas to include in the study
Why Bother?

- Important to understand the different types of gap tests used
 - Assess shock sensitivity
- More comprehensive understanding of each test configuration
 - Help identify methods to correlate data between tests
 - Identifying origins, test setup, applications, and limitations
 - Determine what the results of each test reveal about the material's shock sensitivity
The authors would like to thank:
B. E. Knoblett and G. E. Walseman
REFERENCES

• Donna Price. “Gap Tests and How They Grew,” Minutes of the Explosives Safety Seminar (22nd), Anaheim, California, August 1986, pp. 365-380. (AD-A181 274.)
• D. Price, A. R. Clairmont, Jr., and J. O. Erkman. "The NOL Large Scale Gap Test III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results," Naval Surface Warfare Center, White Oak, Maryland, 8 March 1974. (NOLTR 74-40; publication UNCLASSIFIED.)
REFERENCES

REFERENCES