Abstract reference number: 20112

Review and Update of STANAG 4496

Fragment Impact, Munitions Test Procedure

Christophe JACQ*, Florian PECHOUX

DGA Missiles Testing

BP 80070 – 33166 Saint-Médard-en-Jalles Cedex, France

Presenter e-mail address: christophe.jacq@intradef.gouv.fr
BACKGROUND

 2 Custodial Working Group meetings
 • DGA Missiles Testing, Bordeaux, France (January 2017)
 • Kromhout Kazerne, Utrecht, Netherlands (April 2017)

 STANAG 4496 ed.1 will be replaced by Allied Ordnance Publication (AOP-4496 ed.A version 1) to allow for more efficient updates
PROCEDURES AND NUMBER OF TESTS

- Procedures
 - Procedure 1: 2530 +/- 90 m/s
 - Procedure 2: 1830 +/- 60 m/s

- Number of tests
 - Shall be carried out twice by sub-component of the munition;
 - Once against the main charge filling
 - Once against the most sensitive component/energetic material (e.g. motor igniter, warhead booster)
AIM POINT SELECTION

- Shall be selected to create the most stressing condition on the target energetic

- Shall represent a credible exposure condition, based on the THA
 - First test \textit{at the centre of the energetic component}
 - Second test \textit{on the most vulnerable area}
 - Nota Bene:
 - Aim point and shotline for each test should be approved by national authorities prior to testing
 - Guidance for choosing aim point and shotline can be found in SRD AOP-39.1
ACCURACY REQUIREMENT

- Shall be defined prior to testing and recorded after the test

Current STANAG 4496 ed.1

New AOP-4496 ed.1

- Should be agreed by the National Authority
ACCURACY REQUIREMENT

- Shall be dependent on the geometry of the item under test

Large area:
Hit the centre of the EM with an accuracy to define prior to testing

\[\varnothing = ? \]

Small area (booster, small munition, …):
Hit the energetic component
Angular deviation (e.g. vector sum of yaw and pitch) for the threat fragment at impact shall be measured and recorded.

- Should be limited to ±10°

- Collect data before imposing an acceptable limit value (next edition of the AOP)
LOWER VALUE FOR THE BRINELL HARDNESS

- Addition of a lower value for the Brinell Hardness
- Measurement and record of the value

<table>
<thead>
<tr>
<th>Current STANAG 4496 ed.1</th>
<th>New AOP-4496 ed.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB < 270</td>
<td>190 < HB < 270</td>
</tr>
</tbody>
</table>

NEW
OTHER ISSUES DISCUSSED (1/2)

- No sabot design guidance
- No launcher system design guidance
- No example of the test set-up design
OTHER ISSUES DISCUSSED (2/2)

- No requirement for a standoff distance between the launching system and the test item

- No new requirement on the measurement of the fragment velocity
 - Assess the measurement uncertainties of the impact velocity, the impact location, and the total angular deviation
NEW OBSERVATIONS AND RECORDS

- Aim point(s) selected, hit point(s) (if possible) and whether the fragment exited from the test item or remained within it (if possible)
- Impact velocity of the fragment and method of determination
- Suitable blast or pressure gauges shall be positioned around the test item. The location and height of the gauges have to be recorded
- Accuracy at impact
- Brinell hardness of the threat fragment
- Total angular deviation of the fragment at impact (e.g. vector sum of yaw and pitch)

Estimated measurement uncertainties for: (a) the impact velocity, (b) impact location, and (c) total angular deviation
OBSERVATIONS AND RECORDS

Unchanged / Rewording (1/2)

- Test item identification and configuration; Type and weight of energetic material; Listing of environmental preconditioning test performed; Spatial orientation of the test item;
- Test setup/configuration: Type of procedure, details of weapon(s) and munition used; Distance between weapon(s) and test item; Method of mounting and/or restraint; Distances from the test item to any protective wall or enclosure; Identification and location of any other instrumentation if used;
- Record of events versus time from the order to fire to the end of the trial;
- The nature of any reactions by the test item
OBSERVATIONS AND RECORDS
Unchanged / Rewording (2/2)

- Imagery of the item under test and the test setup shall be done before and after performing the test
- The nature and distribution of residue and debris (included recovery and mapping)
- Meteorological data (wind speed, direction) during the trial
- Indication of propulsion (video or other suitable means)
- Microphone or other suitable listening device to record audible events and enable correlation with visible events and indicated time
- Witness screens as a measure of projection severity
Sentences which are not specific to Fragment Impact test

- Tested Sample selection
- Layout of the munition
- Preliminary Shot
- Safety
- Orientation of impact normal to the surface of the munition
- Calibration of blast gauges
Annex A: Standard fragment

- Conical ended cylinder
- Tolerances: ± 0.05 mm and ± 0°30'
- Fragment Mass: 18.6 g
- Fragment material: mild, carbon steel with Brinell Hardness (HB) between 190 and 270
ANNEXES

- Annex B: Historical overview
 - Changes between STANAG 4496 ED 1 and AOP 4496 ed.A version 1
 - Historical information on the shape, the material and velocities of the fragment from the first version to now
STATUS

- Sent to AC/326 SG/B members for approval (March 2018)
 – silence procedure

- Next steps
 - Approbation by AC/326 Main Group (June 2018)
 - Ratification process
 - Formal application of STANAG 4496 ed.2 and AOP-4496 ed.A version 1
PARTICIPANTS

Thanks to all!

Florian Péchoux (FRA - Lead)
Fabien Chassagne (FRA)
Christophe Jacq (FRA)
Nicolas Kmiec (FRA)
Pauline Tabozzi (FRA)
Albert Bouma (NLD)
Gunnar Ove Nevstad (NOR)
Jon Toreheim (SWE)
Hakan Sahin (TUR)
Tahir Turgut (TUR)
Ben Keefe (UK)
Thomas Reeves (UK)
Nathan White (UK)

Jacek Foltynski (US)
Brian Fuchs (US)
Heather Hayden (US)
Dave Houchins (US)
Dave Hubble (US)
Kathryn Hunt (US)
Lori Nock (US)
Dan Pudlak (US)
Brian Roos (US)
Daniel Ross (US)
Stephen Struck (US)
Tom Swierk (US)
Ken Tomasello (US)
Ernie Baker (MSIAC)
Emmanuel Schultz (MSIAC)
Thank you for your attention!

Any Questions?