

<u>Characterization of MTNP</u> (1-methyl-3,4,5-trinitro-1,2pyrazole)

Philip Samuels*, Dr. Reddy Damavarapu, Henry Grau, Dr. Kimberly Spangler, Dr. Kelley Caflin, Erik Wrobel IMEM April 2018, Portland, OR

UNPARALLELED COMMITMENT & SOLUTIONS Act like someone's life depends on what we do.

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT & ENGINEERING CENTER

Distribution A: Approved for Public Release

UNCLASSIFIED

MTNP OVERVIEW

U.S.ARMY

Molecular Formula	C ₄ H ₃ N ₅ O ₆
Molecular Weight	217
Melting Point	91 C
Exotherm	256 C
Density	1.839 g/cc
Heat of Formation	50.7 kJ/mol

OBJECTIVE

SYNTHESIZE AND PROVIDE MTNP FOR INITIAL EVALUATION EFFORTS

- > UP TO DATE LITERATURE SEARCH AND ANALYSIS OF LITERATURE
- > IDENTIFICATION OF SUITABLE ROUTES
- CONDUCT EXPERIMENTS TO DETERMINE THE SUITABILITY OF IDENTIFIED METHODS FOR LAB SCALE PREPARATION – DOWN SELECT THE RIGHT METHOD
- > ANALYSIS, CHARACTIZATION AND PROPERTIES DETERMINATION
- > DEVELOP PROCESSES AND METHODS FOR LAB SCALE SCALE-UP PROCESS
 - ENVIRONMENTALLY FRIENDLY
 - LEAST NUMBER OF STEPS
 - BETTER YIELDS
 - REPRODUCEABLE METHODS
 - LESS HAZARDOUS WASTE
- DEMONSTRATE THE VIABILITY OF THE DEVELOPED PROCESS BY PRODUCING SIGNIFICANT QUANTITY OF MTNP
- PROVIDE MTNP FOR PERFORMANCE EVALUATION

JAGUAR CALCULATIONS

Explosive	Formula	Density	DH _f	Det Vel	C-J P	Gurn Vel(3)	Gurn Vel(7)	OB
		g/cm ³	kJ/mol	km/s	GPa	km/s	km/s	%
DNAN	C7H6N2O5	1.546	-186.5	6.14	14.8	1.88	2.10	-96.9
3,4 DNP	C3H2N4O4	1.791	120.5	8.31	30.9	2.63	2.86	-30.4
MTNP	C4H3N5O6	1.82	4.53	8.36	31.1	2.59	2.82	-25.8
PrNQ	C4H10N4O2	1.335	-217.3	6.45	14.4	1.95	2.10	-120
TNT	C7H5N3O6	1.654	-63	6.89	19.8	2.20	2.43	-74.0
RDX	C3H6N6O6	1.816	70	8.76	34.8	2.73	3.01	-21.6
HMX	C4H8N8O8	1.905	75	9.09	38.7	2.76	3.04	-21.6

MTNP Starting from 3-NP

¹³C-NMR of 1-methyl-3,4,5-trinitropyrazole in DMSO-d₆

ARDEC

UNCLASSIFIED/ Distribution A

Spectral analysis of MTNP

XRD of MTNP

ARDEC

RDECOM

U.S.ARMY

Molecule	Impact (cm)	BAM Friction (N)	ABL ESD (J)	
		No Reaction in 10 trials	Reacted @ 0.063J, did not	
MTNP	54.1	@ 360N	react in 20 trails @ 0.051J	
		Reacted @ 216N, did		
		not react in 10 trials at	Reacted @ 0.063J, did not	
RDX Class I Type II	18	192N	react in 20 trails @ 0.051J	
		Reacted @ 324N, did		
		not react in 10 trials at	Reacted @ 0.051J, did not	
RDX Class V Type II	>100	288N	react in 20 trails @ 0.040J	
		No Reaction in 10 trials	Reacted @ 0.063J, did not	
DNP	>100	@ 360N	react in 20 trails @ 0.051J	
		Reacted @ 240N, did		
		not react in 10 trials at	Did not react in 20 trials @	
TNT	88.3	216N	0.25J (Old Test Method)	

SEM Images of MTNP

9

DSC of MTNP

TMA analysis of MTNP

- Performed compatibility testing in accordance to STANAG 4147 ED.2
- A DSC for each individual explosive, test material and mixture shall be run in duplicate
- Explosives and test materials are mixed in a 1:1 (w/w) ratio
- Samples are heated at a rate of 5°C/min from room temperature to 300°C or more for each sample
- The reactivity (compatibility) is then determined by comparing the decomposition profiles of the individual components to the mixture

• MTNP is compatible with Al.

- MTNP requires VTS testing with NTO, FOX-7, HMX and O-ring since DSC compatibility showed more than 10C exotherm shift
- MTNP requires VTS testing with brass and 304/316 stainless steel to determine compatibility due to the appearance of a new exotherm
- VTS testing is also needed with copper and A2 Steel due to earlier onset of the decomposition (around 250°C)
- VTS testing with Copper: Pass

Conclusions

- Performed Literature Search and Analyzed Reported Methods
- Made attempts to synthesize MTNP in one pot process from Pyrazole
- > Will Investigate Preparing MTNP Using Sequential Nitration Process
- Looking to Reduce the Amount of Required Reagents
- Characterized and Determined Small Scale Safety and Handling and Thermal Properties of MTNP
- Developed Scale up process
- **FUTURE WORK:**

Continue Investigating Alternate Nitrating Agents/Reagents