

A New IMI Systems Less Sensitive
Brisant Explosive Composition

G. Strul, A. Maish, I. Mandel

04 2018 IMEMTS, Portland, OR

Outline of the presentation:

- ☐ IMI Systems Introduction.
- ☐ Objectives.
- ☐ Approach.
- ☐ Qualification Protocol.
- ☐ Test results of the qualification process.
- ☐ Summary.

IMI Systems

Vision

To be a world class leading defence company, providing cutting edge systems and solutions for Land, Air and Naval forces

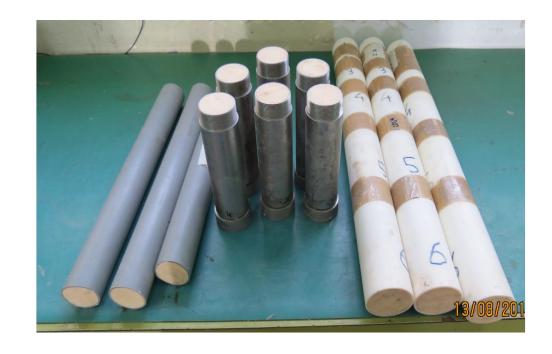
In 1 Jan 2016, IMI transferred its core business activities, assets, obligations, rights and its employees, to IMI Systems Ltd.

- an Israeli company wholly owned by the State of Israel

IMI Systems Locations

Objectives

- The objective of this task was to introduce a new brisant HE composition with high fragmentation features and an output greater than that of PBXN-109.
- Qualify the new composition for the IDF using CLX-663s* as a reference.



* CLX-663S – IMI Systems analog to PBXN-109

Approach

- Identify PBXN-110 as the target composition.
- Develop an HMX based IMI systems' composition analogous to PBXN-110.
- ☐ Configuration of the production process for this composition.
- Characterization and Qualification of the composition according to IDF standard and protocol, based upon STANAG 4170.

R&D Central Laboratory

Qualification Protocol (Partial)

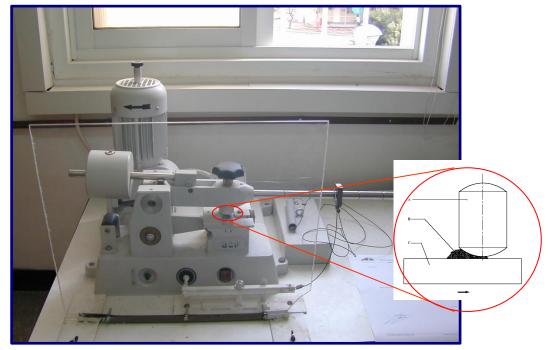
- > Hazard analysis Friction, Impact, ESD
- Vacuum stability
- Thermal analysis
- Mechanical properties
- > Accelerated aging
- > Detonation velocity and critical diameter
- > Additional tests : Bullet Impact

LSGT

Cap test

Small external burning test

CLX-881 qualification protocol was dictated by IDF - based upon STANAG 4170



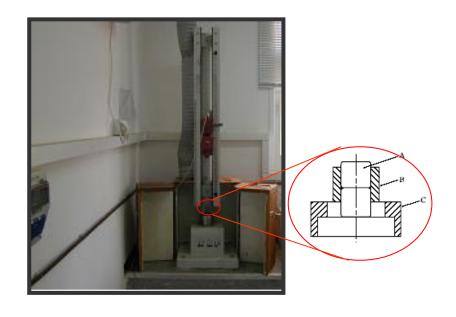
Hazard Characterization - Friction Sensitiveness

IDF Requirement: 6/6 consecutive negative tests.

Method: BAM Friction Machine, Stanag 4487 Annex A, MIL-STD-1751 Method 1024

Results: 6/6 consecutive negative tests - no reaction at 36 Kg F for both CLX 881 and CLX 663s

^{*} CLX-663S – IMI Systems analog to PBXN-109



Hazard Characterization - Impact Sensitiveness

IDF Requirement: $E_{50\%} \ge 5$ joule for secondary explosive. Method: Bam Impact Machine, Stanag 4489, Annex C

Results : $E_{50\%} \ge 5$ joule, less sensitive than CLX 663s

Explosive	Energy [Kg m]	H _{50%} [cm]
CLX-663s	2.92	58.4 (5 kg)
CLX-881	4.00	80.0 (5 kg)

^{*} CLX-663S – IMI Systems analog to PBXN-109

Hazard Characterization - ESD Sensitiveness

IDF Requirement: 20/20 No Fires at 0.25 J

Method: MIL-STD-1751 Method 1032

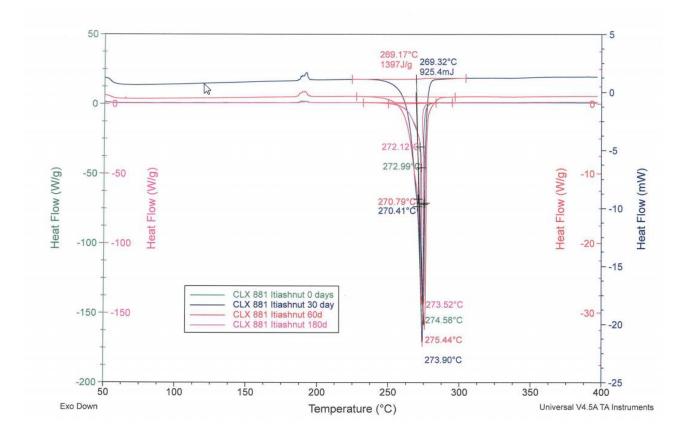
Results: 20/20 consecutive negative tests - no fires at 0.25 J for both CLX 881 and CLX 663s

Vacuum Stability

IDF Requirement: Less than 1 ml/gr.

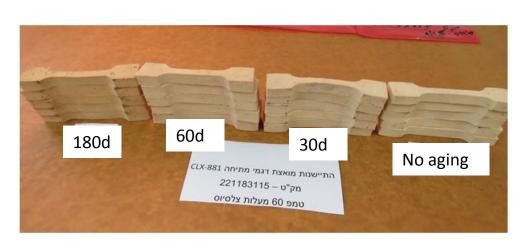
Method: Stanag 4556, MIL-STD-1751 Method 1061

Results:


Explosive	Volume/gr (ml)	IDF Req.
CLX-663s	0.05	Logo thought wolfers
CLX-881	0.21	Less than 1 ml/gr

Thermal Analysis: Self Ignition Temp. and Thermal Stability

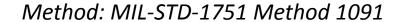
Method: Stanag 4515


Explosive	Self ignition temp. [°C]
CLX-663s	220.2
CLX-881	273.0

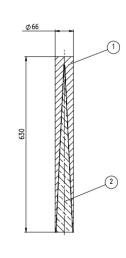
Doc.No

Accelarated Aging - Mechanical properties

Aging (d)*	Hardness [Shore A]	Stress at Max. Load [kg/cm²]
0	21	1.548
30	34	2.105
60	46	3.223
180	71	6.599


* According to IDF protocol

Doc.No


Detonation Velocity & Critical Diameter

Method: MIL-STD-1751 Method 1101

Explosive	Detonation Velocity [m/sec]	Critical Diameter [mm]
CLX-881	8427	9.7
CLX-663s*	7600	10.3

^{*} CLX-663S – IMI Systems analog to PBXN-109

Test results of the qualification process

Bullet Impact

Requirement: Up to moderate reaction – type V.

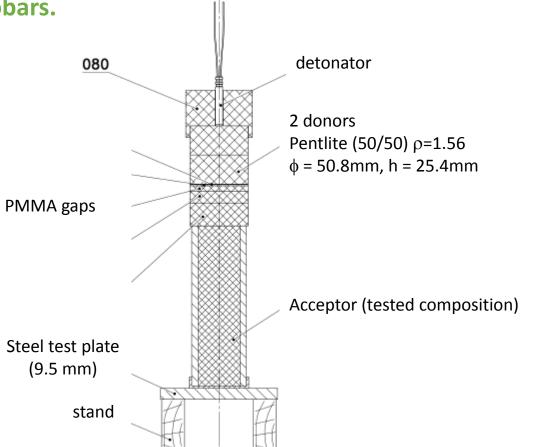
Method: TB 700-2 Chapter 5-8 (UN Test 7 (d))

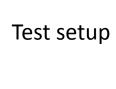
Results: 2/6 Explosive scattered.

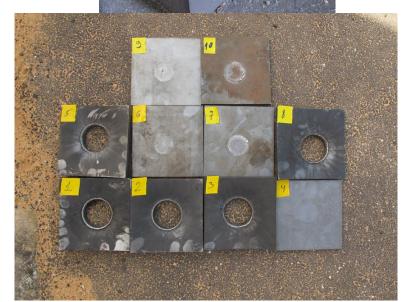
4/6 Explosive burned moderately inside the tube.

Test setup

Test Results


Type V reaction

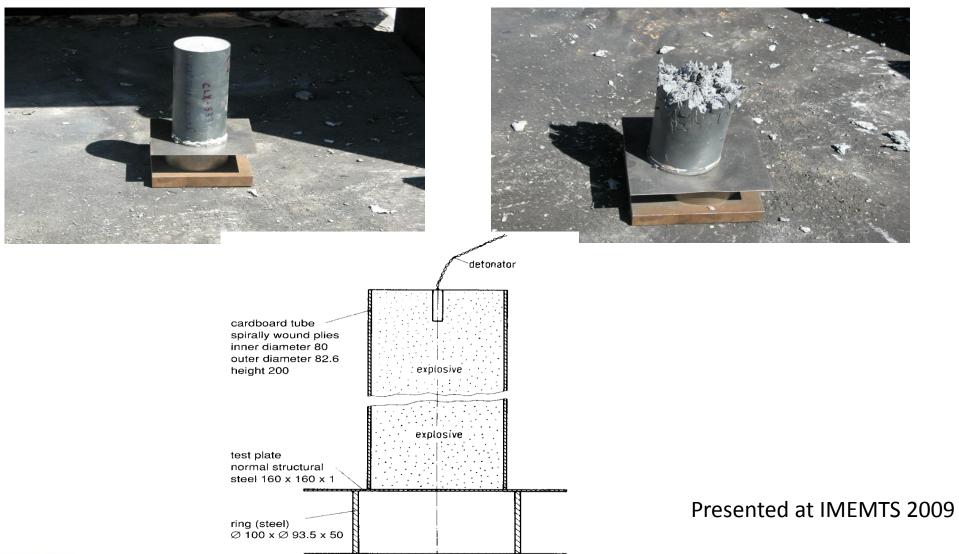

Test results of the qualification process


NOL LSGT - Large Scale Gap Test

Method: MIL-STD-1751A Method 1041

Results: 34 Kilobars.

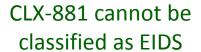
NOL LSGT Results – MIL-STD-1751A


Explosive	Cards	Kilobars
CH-6 (pressed)	267	11
Comp A3 (cast)	242	13.8
Comp B (cast)	201-220	16.9-20.5
Comp C-4	192	22.8
H-6 (cast)	197	21.5
LX-14	199	21
OCTOL 85/15	236	14.5
PBXN-7	217	17.4
PBXN-9	166-201	20.5-31.4
RDX	323	7.4
TATB	78	66.1
PBXN-110 (Cast)**	154-178	27.0-36.8
CLX-663S (cast) ***	178	27
CLX-881(cast) ***	160	34

** High Performance Polymer-**Bonded Explosive Containing** PolyNIMMO for Metal Accelerating Applications / R. Hollands, V. Fung and K. Burrows, IMEMTS 2014

*** Current study

Cap Sensitivity – CLX-533



CLX-881 'Cap Test'

Test setup

Test Results

CLX-881 - Tests results Summary

HMX based PBX explosive with an HTPB inert binder

Test	CLX-881	CLX-663s*
Vacuum Stability (ml)	0.21	0.05
Autoignition Temp. (°C)	273.0	220.2
ESD (5 KV up to 0.25 j)	No reaction	No reaction
Impact Sensitivity (L 50%, Brucetone Method)	4.00 Kg•m	2.92 Kg•m
Friction Sensitivity	No reaction (max 36 kgf)	No reaction (max 36 kgf)
Detonation Velocity	8427 m/sec (ρ=1.66)	7600 m/sec (ρ=1.64)
Critical Diameter (mm)	9.7	10.3

CLX-881 qualification protocol was dictated by IDF - based upon STANAG 4170

^{*} CLX-663S – IMI Systems analog to PBXN-109

CLX-881 Tests results

Test	CLX-881	CLX-663s*
Small external burning test [UN Test Series 3(d)(i)]	Type V reaction (moderate burning)	Type V reaction (moderate burning)
Bullet impact (Stanag 4241)	Type V reaction	Type V reaction
NOL LSGT (MIL-STD-1751A Method 1041)	34 Kilobars	27 Kilobars
Cap Test	reaction	reaction

Doc.No

^{*} CLX-663S – IMI Systems analog to PBXN-109

Thank you for listening!

