Low G MEMS Inertia Switches for Fusing Applications

HT MicroAnalytical, Inc.
Sam Rogers, Danny Czaja, Hopper Chu,
Todd Christenson, Chairman & CTO

todd.c@htmicro.com
Issues
- Reliability
- Scaling

Approach
- Design
- Fabrication

Results
- Initial Testing
Reliability

- Reliability ➔ Force ➔ Δ Energy ➔ Volume
Reliability

\[F_{ctct} = (ma - kx_{ctct}) \]
Force at 25% overdrive versus acceleration for varying proof mass thickness
Design

Force at 25% overdrive versus acceleration for varying proof mass thickness

- 1000
- 500
- 200
- 100
- 50
- 20
- 10

Contact Force (mN)

Acceleration Threshold (Gs)
Design

\[FOM \sim \frac{F \eta}{\$A} \sim \frac{\rho \eta}{\$} \]
Keys for High FOM / Viable Microfabricated Component

1) Materials – ρ, σ_y, σ-n - $

2) High Aspect Ratio - $

3) Tolerances / Integration / Packaging - $

4) Testing - $
Design

Integrated Inertia Switch Anatomy

- Custom metal proof mass
- Hard Gold Contact Pads
- Spin contact not visible
- Conductive via fill
- Ceramic Package (Hermetic)
- Bottom contact
- Top contact
- Common contact
- Side contact
Multi-layer spring-mass fabrication
multi-layer fabrication
Multi-layer spring-mass fabrication
Multi-layer spring-mass fabrication
ma = kx

acceleration threshold vs. fo

acceleration threshold (Gs)

resonant frequency (Hz)
\[ma = kx \]

\[\sim 0.05 \, \text{G} / \text{Hz} \]
Diced Wafer
‘WLP’ Diced Parts
Edge of Device
Resonance Measurements

Resonance Scan T1

Resonance Scan T2
Acknowledgements

Ryan Knight (ARL)
Daniel Jean (Indian Head)
Edward Cornell (China Lake)
Thank You!

ht micro
Albuquerque, NM USA
(505)341-0466
info@htmicro.com