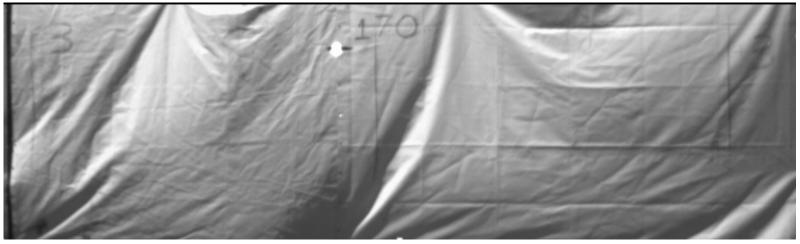


www.aselsan.com.tr

ASELSAN is a Turkish Armed Forces Foundation company.

DEVELOPMENT OF LOW ENERGY ELECTRIC INITIATOR

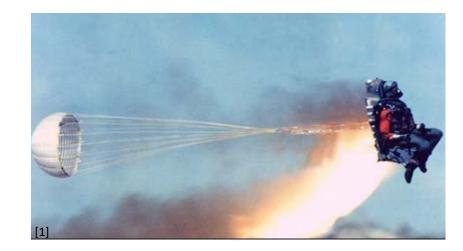
61st Annual Fuze Conference May 15th, 2018 Berkay AKYAPI & Cemil YILMAZ ASELSAN


OVERVIEW

- Electric Initiator Usage
- Comparison
- Components
- Characteristics
- Qualification Tests
- Conclusion and Future Work

- One of the most important requirements for an ammunition is its explosion in the specified time and reliability. The unit that initiates the reaction is called Electric Initiator.
 - Initiation of energetic explosive mixture by use of electro thermal heat obtained through thin film chip.
 - Starting element of the explosive train.
 - Accuracy, low energy, short function time

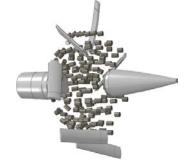
ASELSAN's 35 mm Air Burst Ammunition's explosive chain reaction


Electric Initiator Usage

aselsan

MILITARY APPLICATIONS

- Smart munitions,
- Ejection systems,
- Pyro components,
- Missiles



ASELSAN's 40 mm High Velocity Smart Grenade

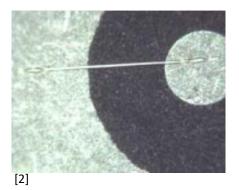
ASELSAN's 35 mm Air Burst Ammunition

UNCLASSIFIED

CIVIL APPLICATIONS

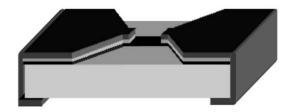
- Automotive safety (airbags, seat belts)
- Space applications (separators, explosive bolts)
- Mining (rock extraction)
- Industry (demolitions)

aselsan



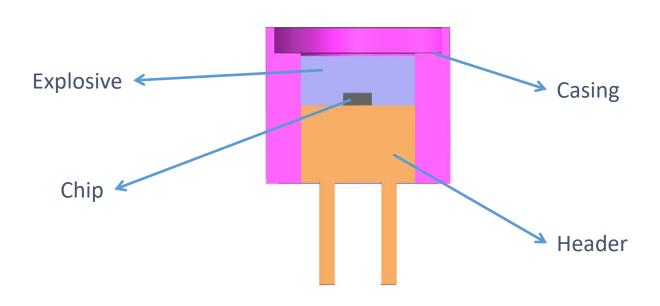
Comparison with Bridge Wire

- Classic technology uses bridge wire instead of thin film initiator chip.
- This low cost initiators are produced since many years.
- Bridge wire initiators have many types and different sizes.
- But these products have disadvantages
 - Limited all-fire values, to obtain low energy initiators it has to use ultra fine(<10 micron) bridge wire
 - Difficult welding process and controlling resistance value
 - Not suitable for high shock, vibration and spin applications, e.g. smart munitions

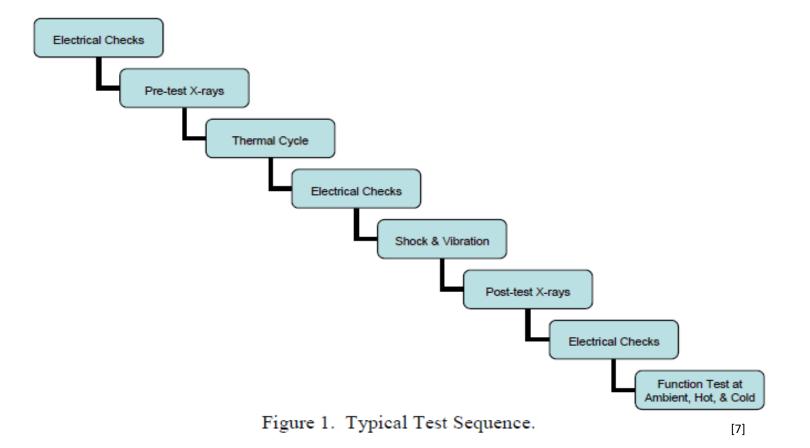


New technology uses thin film initiator chip to activate energetic materials.

Advantages	Disadvantages							
Low firing energy	Cost							
Low firing time	Need ESD filters							
High [no fire/all fire] ratio	Need specific headers for soldering or bonding							
Easy manufacturing, using automatic reflow-	Standart surface month resistors can be difficult							
machines	for tiny initiators							
Almost constant resistance value								
Withstands difficult environmental conditions								
Suitable for high accelarations and spin rates								



Components


Electric Initiators are mainly composed of

- ✤ Glass to Metal Seal Header
- ✤ Thin Film Initiator Chip
- Explosive Mixture
- Casing

Test-general

aselsan

TABLE 1: ENGINEERING DESIGN TEST SCHEDULE

Engineering Design Tests, were performed by the reference of MIL-DTL-23659F.

But we modified some of test routes.

Omit some of them and increase/decrease some test numbers according to our requirements.

	REF.							_	_	_	_	_	_	S (GR	_						_		TOTAI
TEST	PARA	50	6	6	20	20	20	20	20	20	20	20	2	2	2	2	2	2	2	2	2	176	41
Dielectric																							
Withstanding	4.4.1	х	х	Х	х	Х	Х	Х	х	х	Х	х	х	х	х	Х	х	Х	х	х	X	х	410
Voltage													<u> </u>	L							<u> </u>	L	
Radiographic	4.1.2.2	x	x	x	x	x	x	x	x	x	x	x	x	x	х	x	x	x	x	х	x	x	410
Inspection																							
Leakage	4.1.2.3	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	416
Bridge Circuit Resistance	4.4.2	Х	х	Х	х	X	х	X	X	Х	X	Х	X	X	Х	Х	Х	х	X	х	X	х	410
Static Discharge	4.4.3.2	x							<u> </u>		-		<u> </u>	<u> </u>				<u> </u>	50				
Bridge Circuit	4.4.3.2	^									-		<u> </u>	├				-	-	<u> </u>	<u> </u>		50
Resistance	4.4.2	Х																					50
Stray Voltage	4.4.3.3	Х	-								-		<u> </u>	<u>├</u>				-	<u> </u>	<u> </u>	<u>├</u>	<u> </u>	50
Bridge Circuit											-		<u> </u>				-		-		<u> </u>	-	
Resistance	4.4.2	Х																					50
Power Current or	4.4.3.1 or												<u> </u>	<u> </u>							<u> </u>	<u> </u>	
Stimulus 70° F	4.4.5.1	х																					50
Resistance	4.4.2	x											<u> </u>	<u> </u>					-	<u> </u>	<u> </u>	-	50
Forty Foot Drop	4.6.1	~	x											<u> </u>							<u> </u>	<u>├</u>	6
Six Foot Drop	4.6.2		- 11	X																	<u> </u>	<u>├</u>	(
Shock	4.6.3				x								X	x	X	x	х	x	X	X	x		38
Vibration	4.6.4					X							X	X	X	X	X	X	X	X	X		38
Temperature-														<u> </u>									
Shock/Humidity/	4.6.5						х																20
Altitude																							
Cook-Off	4.6.6.1							Х															20
High Temperature	4.6.6.2								x														20
Exposure	4.6.6.2								^														20
Salt Fog Test	4.6.7									Х													20
Radiographic	4.1.2.2			x	х	x	х						x	x	x	x	x	x	x	x	x		84
Inspection	4.1.2.2			л	л	л	Λ						л	^	л	л	л	л	Λ	л	Λ		04
Bridge Circuit	4.4.2			х	х	x	х		x	x			x	x	x	x	x	x	x	х	x		124
Resistance									^	л													
Leakage	4.1.2.3			Х	Х	Х	Х						Х	Х	Х	Х	Х	Х	Х	Х	Х		84
Static Discharge	4.4.3.2			Х	Х	X	Х		X	Х			X	X	Х	Х	Х	Х	X	Х	X		124
Bridge Circuit	4.4.2			х	x	x	x		x	x			x	x	x	x	x	x	x	x	x		124
Resistance				~	~	~	~		~	~			~	~	~	~	~	~	~	~	~		12
Power Current or	4.4.3.1 or			x	x	x	x			x			x	x	x	x	x	x	x	x	x		104
Stimulus 70° F	4.4.5.1																						
Power Current or	4.4.3.1 or								x		x												40
Parmeters 225° F	4.4.5.1												<u> </u>	⊢					<u> </u>		<u> </u>	└──	
Bridge Circuit	4.4.2			х	х	x	х		x	x	x		x	x	х	х	х	x	x	х	x		144
Resistance													<u> </u>	<u> </u>					<u> </u>		<u> </u>	<u> </u>	
Min. 50 Milli sec.	4.4.4	х		х	х	x				X			x			x			X			X	298
All-Fire 70° F													<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>		
Min. 50 Milli sec.	4.4.6						х					х		x			х			х		I I	46
All-Fire -80° F Min. 50 Milli sec.			<u> </u>		<u> </u>		<u> </u>	\vdash			-	—	<u> </u>	├		-	<u> </u>						
	4.7								x		x				х			х			x		46
All-Fire 225° F [8]																							

[8]

Test-general

aselsan

	TABLE 1: ENGINEERING DESIGN TEST								SCHEI	ULF	7												
				TEST ROUTES										TOTAL									
		23659F	Α	В	С	D	Ε	F	G		Ι	J	Κ		Μ		TOT		2	2	2	176	416
	TESTS	REFERANCE														176		416	х	х	х	x	416
	Radiografic Inspection	4.1.2.2								<u> </u>						176		416	х	x	х	x	416
	Bridge Circuit Resistance	4.4.2	50	10	10	20	20	20	20	20	20	20	10	10	10	176		416	Х	x	х	x	416
Enginooring		4.4.3.1																	Х	x	х	x	416
Eligineering	Power Current or Stimulus 70° F	4.4.5.1	50															50		\vdash	+	+	50 50
by the refere	Bridge Circuit Resistance	4.4.2	50															50		\square	\pm	\pm	50
But we mod	Forty Foot Drop (12 m)	4.6.1		10														10					50
	Siz Foot Drop (1,5 m)	4.6.2			10													10					50
Omit some of	Shock	4.6.3				20							10	10	10			50		\vdash	\rightarrow	+	50 6
some test n	Vibration	4.6.4					20						10	10	10			50	Х	X	X	\mp	6 38
requirement	Temperature/Shock/Humidity/Altitude	4.6.5						20										20	Х	X	Х	\mp	38
•	Cook-off	4.6.6.1							20									20					20
	High Temperature Exposure	4.6.6.2								20								20		F	\neg	\mp	20
	Radiografic Inspection	4.1.2.2			10	20	20	20					10	10	10			100	_	\vdash	\dashv	+	20 20
	Bridge Circuit Resistance	4.4.2			10	20	20	20		20			10	10	10			120	х	x	х	\top	84
		4.4.3.1																	х	x	х	+	124
	Power Current or Stimulus 70° F	4.4.5.1			10	20	20	20					10	10	10			100	X	X X	X X	\mp	84 124
		4.4.3.1																	х	x	x	+	124
	Power Current or Stimulus 225° F	4.4.5.1								20	20							40	x	x	x	+	104
	Bridge Circuit Resistance	4.4.2				20				20	20		10	10	10			140	-		-	+	40
	Min 50 ms all fire (70°F)	4.4.4	50		10	20	20						10			176		286	x	x	x	+	144
	Min 50 ms all fire (-80°F)	4.4.6						20				20		10				50	X	×	×	+	
	4.7								20	20				10			50	X	\vdash	\dashv	x	298	
		All-Fire -8 Min. 50 M	4.	.0		-			Ť	<u> </u>	\square	\neg	-	^	^		<u> </u>	1	x	\rightarrow	+	46	
		All-Fire 22		4.1	7							х		х			Х	Х			х		46
		[8]																					

Functional tests were done at factory level. During all-fire tests we double checked the explosion time with oscilloscope and fast-cam.

Tests

aselsan

Activation of explosive train tests: Initiation of Safe and Arm

Dent in block tests

Tests

aselsan

Series of environmental tests were done according to MIL-DTL-23659, STANAG 4157 and AOP-20.

Temperature and humidity cabinets

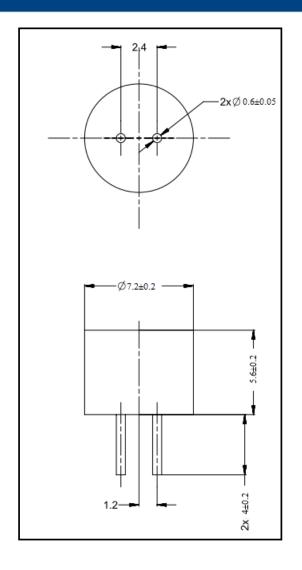
Vibration and Shock Tests

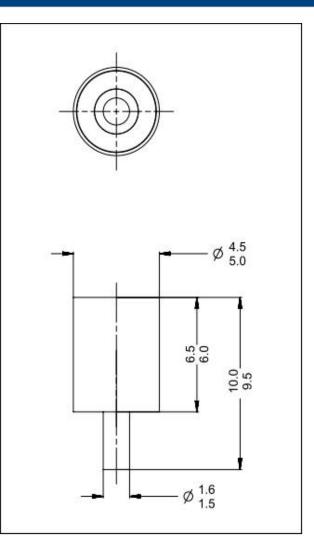
12m Drop Test


Jumble Test

Tests

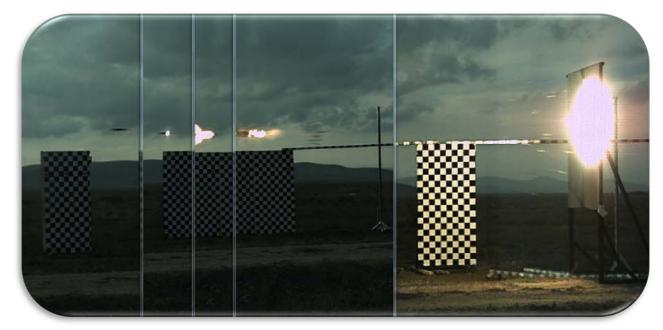
- Electrostatic Discharge(ESD) tests were done.
- >10kV tested.





	Initiator 1	Initiator 2						
All-Fire:	700 mA	350 mA						
No-Fire (5 minutes):	450 mA	150 mA						
Ignition time (max):	150 microseconds	100 microseconds						
Firing Energy:	< 1 mJ	< 1 mJ						
Resistance:	2.5-3.5 ohm	4-5 ohm						
	~7 mm diameter	~5 mm diameter						
	~10 mm length	~10 mm length						
Dimensions:	double pins	single pin						
Operation Temprature:	-54 +71 °C	-54 +71 °C						
Service Life:	> 15 years	> 15 years						
	< 100 miligrams of primary	< 100 mg of primary						
Explosive Amount:	explosive	explosive						
Qualification Standard:	MIL-DTL-23659	MIL-DTL-23659						

Characteristics



Note: The dimensions provided can be customized.

Conclusion and Future Work

- Low Energy Thin Film Electric Initiators are developed, qualified and field-proven
- Thin Film Electric Initiators have many advantages compared to bridge wire initiators.
- The developed Electric Initiator, which is very fast and requires low energy, meets the design and performance requirements to be used in various kind of fuzes of smart munitions.

Development studies and qualification tests were conducted together with MKEK.

aselsan

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

- Presenter Berkay Akyapi
- Mail ASELSAN A.S.
 Mehmet Akif Ersoy Mah.
 296. Cadde No: 16
 06370 Yenimahalle
 Ankara / Turkey
- Phone +90 312 592 63 69
- Fax +90 312 592 30 30
- E-Mail bakyapi@aselsan.com.tr
- Web www.aselsan.com.tr

[1]-<u>https://www.popularmechanics.com/military/aviation/a26193/how-pilots-eject-from-fighter-jet/</u>18.04.2018

[2]- Vishay-Sfernice Thin Film, EPIC presentation

[3]- <u>https://psemc.com/products/pyrotechnic-cutter/</u>18.04.2018

[4]- <u>https://www.fool.com.au/2017/12/20/205m-acquisition-boosts-orica-</u> <u>ltds-share-price-growth-potential/</u>18.04.2018

[5]- <u>https://www.designingbuildings.co.uk/wiki/Explosives</u> 18.04.2018

[6]- EaglePicher Technologies, LLC, 1DT100 Electric Detonator datasheet

[7]- US Army Developmental Test Command Test Operations Procedure 5-2-522 Performance Testing Of Explosive Components , 20.11.2007

[8]- MIL-DTL-23659F