



# Soldier Borne Power Generation In Tier 1 Environments

**Noel Soto** 

21 August 2018

US ARMY NATICK SOLDIER RESEARCH, DEVELOPMENT & ENGINEERING CENTER





"When you are short of everything but the enemy, you're in combat"

MLoC





# Challenges

- Soldiers will be used for missions of longer duration and will be more isolated from supply lines
- Soldiers today use more technology to act as force multipliers
- The trend is to use more electronics
- Capabilities = Batteries = Weight Burden = Ineffective Soldiers





# U.S.ARMY



# **Battery Types**

## Primary Batteries

- Pro
  - Higher energy density allows for longer running time of equipment (120-300 Wh/Kg)
  - Less expensive
- Con
  - Cannot be recharged

#### Rechargeable Batteries

- Pro
  - Rechargeable. (200+ recharging cycles)
  - Long term costs are reduced
- Con
  - Energy density is lower (80-125 Wh/Kg)
  - · Initial cost is high
  - Requires recharging capabilities





# **Recharging Batteries**

- Fossil fuels
- Clean technologies
- Harvesting





#### **Fossil Fuels**

- Pro
  - High energy density (1 kW)
  - Low exertion from user
  - Low cost
- Con
  - Fuel logistics
  - Weight
  - Noise
  - Smell







# **Clean Technologies**

#### Solar

- Pro
  - Lightweight
  - Silent
  - Power (c. 50 W/m<sup>2</sup>)
- Con
  - Not rugged
  - Time/weather limited
  - Signature
  - Cost

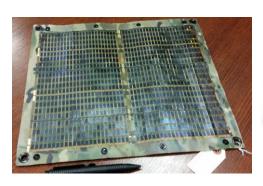




#### Fuel Cells

- Pro
  - Steady power (10-50 W)
  - Silent
  - Clean waste
- Con
  - Cost
  - Fuel logistics
  - Weight










# **Harvesting Technologies**

- Solar
  - Pro
    - Lightweight
    - Power (c. 130 W/m<sup>2</sup>)
  - Con
    - Not rugged
    - Cost





- Kinetic
  - Pro
    - Lightweight
    - Power availability
  - Con
    - Low to medium noise
    - Effort required
    - Acceptability









### **Backpack Frame Kinetic Harvester**

- Energy generator based on frequency and mass
- Power: 8 40 W
- Weight: 10 lbs. frame
- Material: plastic
- Can be used as a static power generator
- Ruggedized frame able to handle up to 100 lbs.







#### **Kinetic Knee Harvester**

- Energy Generator based on knee movement
- Power = 9-12 W
  - Uphill ≈ 6 W
  - Downhill ≈ 30 W
- Weight: 5 lbs
- Materials: Kevlar and carbon fiber
- GPS denied navigation
- Augmentation (fatigue reduction)





#### **Observations**

- Energy requirements are rising exponentially and is becoming an unsustainable trend for the dismounted Soldier
- Current battery load is 16-20 lbs.
- Other capabilities (UAS, UGS, etc.) add additional power requirements and associated weight
- Emerging capabilities (augmentation) will add to the overall power demand





"I don't care if I am low on everything, as long as I have power, I can call for those items that I need"

CO from a 25<sup>th</sup> ID company