

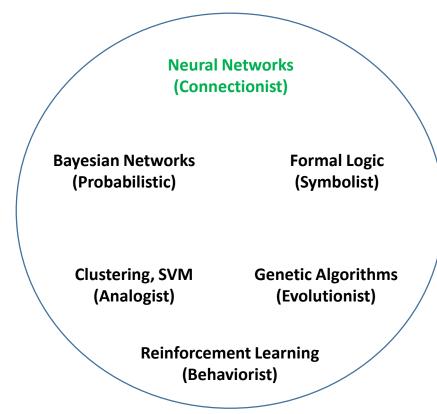
U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND

Al and Intelligent Systems: Army Challenges

Brian Sadler & Tien Pham

ST for Intelligent Systems

ARL



AI & ML

- All is the ability of machines to do things that people would say requires intelligence
- Al is a broad set of tools and theories

ΑI Deep Machine Artificial Learning Intelligence Learning

Machine Learning

ARMY AI: UNIQUE CHALLENGES

Ground-based operations in complex environments

- Lack of infrastructure and prior access
- Lack of Army-relevant training data
- Rapid operational tempo

Reliance on wireless networking and distributed operations

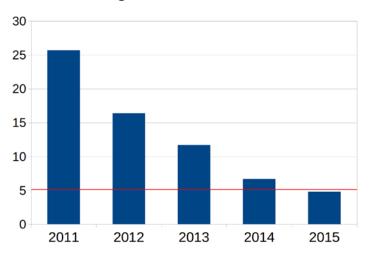
- Decision making with uncertainty
- Adversaries and deception
- Cyber / EW

Distributed Intelligence Collaborative Agents Adversarial Al

Motion and Manipulation

Autonomous Networking

Commercial Al Infrastructure: road signs, power sources, cellular networks, cloud-based services, massive scale HPC



NEURAL NETWORK CLASSIFIERS

Dramatic advances in processing natural signals (speech, vision)

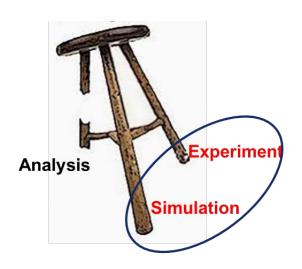
Fueled by massive training examples & digital computation

ImageNet Error Rates

At or exceeding "human performance"

No analytical framework

Unpredictable performance

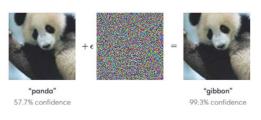

Lack of online memory and adaptation

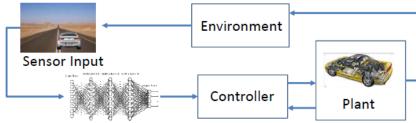
Empirical guess and check development

Assumes prior access for training

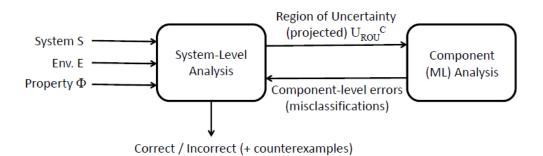
Data driven paradigm not sustainable

Expect dramatic successes & failures





ADVERSARIAL AI R&D


Nguyen et al., 2015

Learning-Based Perception

Closed loop system: subject to classification errors, adversarial input

System level verification: towards safety, security, trust

Semantic Adversarial Deep Learning Dreossi, Jha, Seshia arXiv.org 1804.07045, 2018

TOWARD INTELLIGENT SYSTEMS

Army AI R&D

- Cyber / EW
- Adversarial Al
- Robotics & physical reasoning
- Distributed intelligence and control
- Human-machine dialog
- Crowdsourcing
- Online learning and perception
- Reinforcement learning and policy
- Verification and validation

Goal: Adding Intelligence

- Off-road ground mover
- Munition
- Aerial collector
- Intel info integrator and interpreter
- CoA generator and monitor
- Cyber defense agent
- Network management agent
- Chem-Bio detector

AI COMPUTING

HPC for AI

- GPU-based commodity
- Al algorithm R&D
- Large scale simulation & learning
- New forms of test & evaluation
- Support operational AI & Algorithmic Warfare

Emergent & Embedded Computing

Next-gen embedded AI chips

Intel Movidius Neural Compute Engine Qualcomm Neural Processing Engine Huawei Kirin 970 Neural Processing Unit Apple A11 Bionic Neural Engine Google Pixel Visual Core SoC

Army AI will be a rich heterogeneous mixture of platform, tactical cloud, & edge-based computing

DISCUSSION

RDECOM AI Strategy Study July 2018

End

LEARNING & BIG DATA

Big Data Assumptions

- Sufficiently large (size needed unknown a priori)
- Data collected in the wild isn't poisoned (bad examples, adversary)
- Data sufficiently broad for Al generality (public data sets too pristine)

Big Data Research Areas

- Unsupervised learning
- Semi-supervised learning w/ human-inthe-loop
- Learning while incorporating constraints, physics, or models
- Supplementing training with simulations
- Transfer learning between agents
- Robust learning to handle adversary
- Online and lifelong learning to avoid reliance on batch training

Learning under study for many ML approaches, not just NNs.

Some problems do not require massive data sets.