

U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND

DIGITAL RADAR TECHNOLOGY FOR AIR AND MISSILE DEFENSE

Dr. Gregory Mitchell, Dr. Abigail Hedden, Daniel Galanos, Theodore Anthony, Brendan McElrone

U.S. Army Research Laboratory

Legacy radar platforms are stove piped:

- Custom hardware, custom software, single mission
- Upgrades don't propagate across multiple platforms
- Platforms can't network capabilities
- Not scalable or sustainable for Army modernization priorities

Can't adapt to dynamic environments:

- Not jamming resistant, not frequency agile
- Can't respond to new threats without upgrades

Calibration:

- High precision in-situ calibration is essential for future success of digital radar

DIGITAL COMMON ARCHITECTURE SOLUTION

Digital Radar can be an Open Architecture Modular Solution

- Small, scalable, lightweight form factor
 freedom of movement, mobile radar
- Repairs and upgrades propagate across platforms sustainment of operations
- Networking between radar platforms situational understanding, wide area security
 - Common architectures mean tri-service sharing of assets and information

Individual Control of ESA at the Element Level - In-situ Calibration

- Continuous calibration ensures continuous optimal performance
- Adaptable to emerging threats and changing operational environment

UNCLASSIFIED//APPROVED FOR PUBLIC RELEASE

BEAMFORMING AND BEAM STEERING

Compared analog vs. digital beamforming and beam steering for two frequency bands:

- Used 16 element linear arrays at S- and X-band
- Simulated results represent a perfectly calibrated array
- Beam steering was tested from 0° to 60° off boresight
- Digital module matches simulated results

DIGITAL BEAMFORMING & BEAM STEERING

Multiple simultaneous beams at S- and X-band:

- Digitally steered 4 simultaneous receive beams
- Beams steered up 0° to 60° off boresight
- Excellent agreement between measured and simulated patterns
- Coherently formed and steered beams of two separate radars

Digital Module Demonstrates Re-configurability to support Multiple Radar Systems

ARL Demonstrates shared Radar Frequencies with a Single Antenna:

- Dual-band antenna (S- & X-band), in the same aperture
- Dual-polarization (V- & H-) flexibility for ground-based radar
- Similar scaled array performance as currently fielded CTA and AMD radars
 - Return loss: -10 dB or better, gain 37 40 dB, 3.0° beam width
- Simultaneous operation of digital dual band systems at S- and X-band frequencies
- Antenna allows full beam control at both frequencies at the same time

ARL has Demonstrated Dual-Band Functionality for Multi-mission Radar

S- AND X-BAND IN ONE ANTENNA

Demonstrated capability at 3.56 GHz and 10.3 GHz:

- Digital transceiver module excites dual-band antenna
- Both V- and H-pol data
- Multiple steering angles (0° to +/- 30°)
- Observed pattern cuts match simulations

S- and X-band ESA* *patent pending

Dual Band and Dual Polarization Functionality in a Common Digital Architecture

Digital Radar Capabilities:

- Modular solution with a common architecture across platforms
- Formation and scanning of multiple beams, null steering, in-situ adaptability
- Propagates repairs and technology upgrades across all platforms
- Networking between radar platforms
- Small, scalable, lightweight form factor

ARL Novel Dual-band ESA:

- Combines the S- and X-band antennas into a single platform
- Simultaneous S- and X-band operation
- H- and V- polarization diversity in a thin planar structure
- Needs novel material manufacturing methods to scale design

Calibration:

- Leverage re-configurability and computational capabilities inherent to digital arrays
- High precision calibration is essential for digital array technology viable
- Need calibration techniques that are wideband and computationally efficient
- Over the air calibration not feasible in the field

FUTURE WORK

Digital Calibration Algorithms:

- ESA radar functions require high element level phase accuracy
- ARL is investigating in-situ calibration algorithms using digital radar
- These algorithms will be system agnostic and adaptable

Additive Manufacturing for Antennas:

- New antennas lead to increasingly complex geometries with tight tolerances
- Traditional manufacturing techniques can't meet these requirements
- ARL is leading research on 3D printing of antennas and RF devices
 - Develop electromagnetic materials compatible with 3D printing
 - 3D printing complex antenna designs

Complex hybrid material 3D printed antenna prototypes

Integrated multimission capabilities lead to complex antenna designs

Backup Slides

3D PRINTED ANTENNA DESIGN

U.S. ARMY RDECOM

U.S.ARM

Non-traditional antennas:

- Simultaneous Multi-Mission capabilities
- Frequency and polarization agility
- Thin, lightweight, planar

Integrated, multi-mission capabilities lead to complex designs:

- Multiple substrates & conductive layers
- Complex geometry: concentric radiators, multiple feeds
- High cost, low volume, long lead times with traditional manufacturing

Additive Manufacturing for RF:

 ARL developing non-traditional, materials-driven approaches to manufacturing

DUAL LAYER ANTENNA GEOMETRY

