

U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND

Building a foundation for MUMT

Jeff Ernat

Team Leader for Autonomy Teaming

RDECOM, TARDEC, Ground Vehicle Robotics (GVR)

BUILDING A FOUNDATION FOR MUMT

Logistic Resupply

Autonomous Ground Resupply

Develop and demonstrate an improved and optimized distribution system that integrates new & emerging technologies across the full spectrum of operational and tactical supply movement operations.

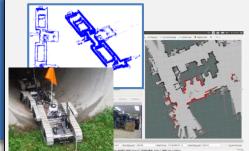
<u>Expedient Leader Followe</u>

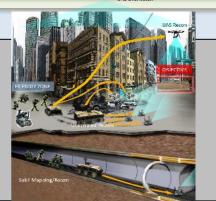
Rapidly delivery and issue 70 leader follower enabled PLSs to Soldiers for a one year Operational Technical Demonstration (OTD) starting 4QFY19.

Robotic Combat Vehicles

Combat Vehicle Robotics

Develop/integrate technologies that enable scalable integration of multidomain robotic and autonomous system capabilities teamed within Army formations supporting all combat warfighting functions.


Future Manned / Unmanned Teaming Formations



Built on Open Autonomy Architecture (AGVRA)

Small Robotics for Urban / Subterranean

Development of capabilities to support urban and underground operations such as unmanned complex tunnel investigation, CBRNE missions and reconnaissance.

CAPABILITY TO SOLDIERS SOONER

Autonomy Architecture enables getting hardware into Soldier's hands with incremental software capability improvements over time.

Logistic Resupply

Expedient Leader Follower

Issue two companies (60 PLS Trucks) with Leader Follower capability to soldiers for 12 month operational evaluation.

4QFY19

Increment I Baseline Architecture Design & Build

- √ Modes (Leader Follower, Teleop)
- ✓ Assembly (Manual Line Up Vehicles)
- √ Formations (Column)
- ✓ Reverse (Teleoperation and Manned)
- ✓ GPS Denied (LOS to Leader)
- ✓ Turnaround (Vehicle K Turn)
- ✓ Obstacles (Static & Large Dynamic)
- ✓ Dynamic Rerouting (None)
- ✓ AO (Primary & Secondary Roads)
- ✓ Operations (Day and Night Driving)
- Weather (Light Rain/Snow/Fog)
- ✓ Safe Harbor (Stop)

3QFY20

Increment II Additional Autonomous Behaviors

- Modes (Augmented TeleOp, Waypoint)
- Assembly (Drive Past and Assemble)
- Formations (Inverted T)
- Trailers (Forward)
- · Reverse (Retrotraverse)
- ✓ GPS Denied (Comms to Leader)
- Turnaround (U Turn)
- · Obstacles (Negative)
- Dynamic Rerouting (Static Vehicle)
- AO (Open & Rolling Terrain)
- Operations (Black Out)
- · Weather (Moderate Rain/Snow/Fog)
- Safe Harbor (Pull Over)

3QFY22 Increment III

Advanced Convoy Behaviors

- Modes (Augmented Waypoint)
- Assembly (Line Up in Depot)
- Formations (Staggered Column)
- Trailers (Forward & Reverse)
- Reverse (Retrotraverse)
- GPS Denied (Know AO)
- Turnaround (U Turn with Obstacles)
- Obstacles (Small Dynamic)
- Dynamic Rerouting (Moving Vehicle)
- AO (Trails)
- Operations (PLS OMS/MP)
- Weather (Heavy Rain/Snow/Fog)
- Safe Harbor (Limited path)

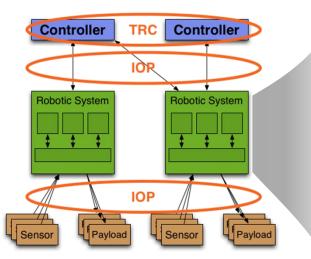
Army does not have to re-buy autonomous similar capability for different platforms

20+ Other Platforms Demonstrated

Baseline capability will be built on for more complex tactical, weaponized systems

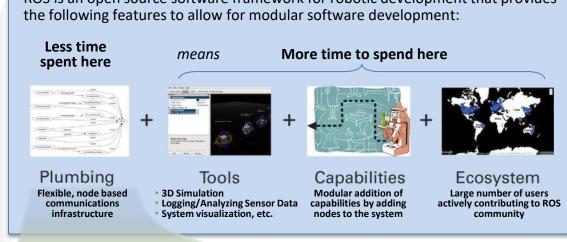
Combat Vehicle Robotics (CoVeR)
program will advance autonomous
behaviors to enable mounted Manned
Unmanned Teaming

Robotic Combat Vehicles



OPEN MODULAR GROUND VEHICLE **AUTONOMY**

Autonomous Ground Vehicle Reference Architecture (AGVRA) - Set of guidelines to enable the robotics community to fulfill the Army's Robotic and Autonomous System (RAS) commonality objectives by establishing an affordable means to deliver advanced capability to the Warfighter by utilizing architectural best practices and standards.


Key standards for unmanned systems

Interoperability Profile (IOP) defines software massaging & hardware interfaces between major subsystems of unmanned ground systems utilizing existing standards

Autonomy Software Framework (ROS-M)

ROS is an open source software framework for robotic development that provides

Ground Vehicle Robotics (GVR) Modular Software Approach (MSA)

- Defined modular autonomy software architecture for Army ground autonomous systems
- Success of this approach relies on strong government and industry collaboration developing interface standards at the appropriate level between applications.
- Library of GPR autonomy software (ITAR compliant) provided to industry through software distribution agreement (20+ outside entities have the software)
- Enabling competition at the software module level (prevents vendor lock, mitigates talent migration, enables gov't to capitalize on industry innovation)
- Common software framework/architecture to streamline test and evaluation process (Delta test for new capabilities rather than totally new system)
- Transition path for future capabilities such as AI / ML enabled autonomy