

COMMITMENT & SOLUTIONS

Act like someone's life depends on what we do.

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT & ENGINEERING CENTER

DEFINITIONS

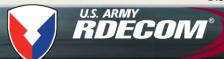
Small Caliber:

.22 up to .50

Multiplex:

Cartridge contains more than one projectile or bullet

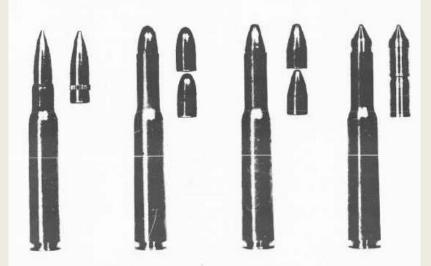
Multiplex cartridge technology is not a new concept


1862 – Patent composed for "Improvement in Compound Bullets for Small Arms"

1879 – Government proposal for triplex (three-bullet) rifle round was put together but subsequently rejected

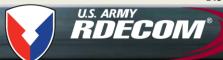
1945 – Nazis had designed a duplex (two-bullet) rifle round as part of an SS project

1952 – Government technical memorandum concluded that the current infantry weapon and ammunition at that time had an undesirably low Probability of Hit $(P_{(h)})$ on mansized targets


Project Salvo

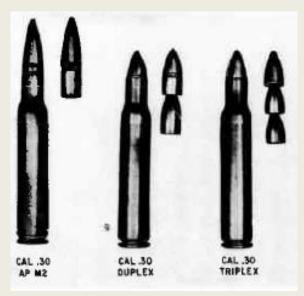
Initiated February 4, 1952 by Olin Mathieson Chemical Corp

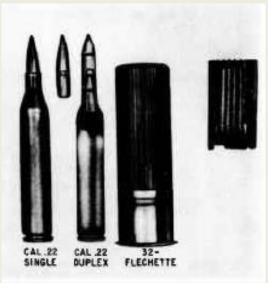
Phase I:


- Perform extensive P_(h) studies and analytics to prove performance benefits of multiplex cartridges over conventional single-bullet technology
- Address M1 rifle P_(h) via a .30 caliber duplex cartridge with dispersion less than 40" @ 300yds
- Modify weapon chamber to accept cartridge case with a longer neck

CAL. 30 MULTIPLE PROJECTILE
CARTRIDGES

STANDARD 30-M-2 150 GRAIN BULLET IIO GRAIN BULLET 96 GRAIN BULLET 92 GRAIN BRASS BULLET

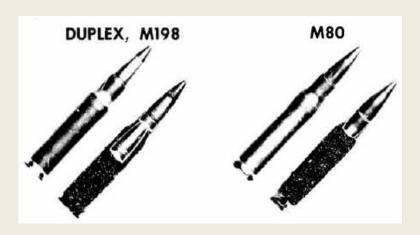


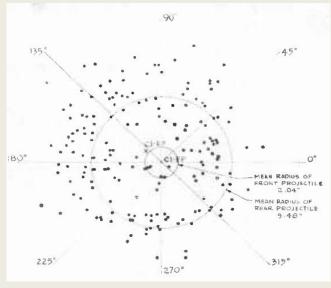


Project Salvo

Phase II:

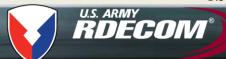
- Design multiplex cartridges that would operate without modifying M14 weapon chambers or cartridge cases
- Minimize sacrifices in soft tissue damage, hard target penetration
- Increase effective range to 500yds
- Experiment with flechette shot shells
- · Perform sensitivity analyses with automatic and burst fire
- Conduct extensive live-fire testing (paper targets, gelatin, soldier helmets)
- Design for cost-effective manufacturability




Project Salvo

Lessons Learned:

- Multiplex cartridges yielded a 74% increase in P_(h) over single-bullet cartridges out to 500yds range and still offered viable penetration and performance across the intended target set
- Smaller calibers than .30 yielded favorable results but could not produce the same benefits at longer ranges, so .30 caliber was chosen going forward


Dispersion @ 100yds

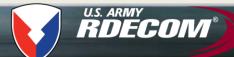
Helmet penetration @ 500yds

Cartridge, 7.62mm Ball, Duplex, M198

- USG Type-Classified 7.62mm cartridge
- Interoperable with unmodified M14 rifle
- Tighter dispersion than all previous multiplex cartridges
- Penetrated helmets and helmet liners at 500yds
- Similar lethality characteristics to conventional ammo
- Produced at Frankford Arsenal

*However, in 1965 the M198 Duplex was considered **not suitable** for Army use due to the fact that it did not offer a *substantial* combat advantage over the standard ball cartridge.

PROBLEM


Enemy Forces are becoming:

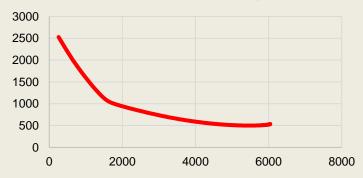
- Faster
- More agile
- Harder to defeat
- More capable

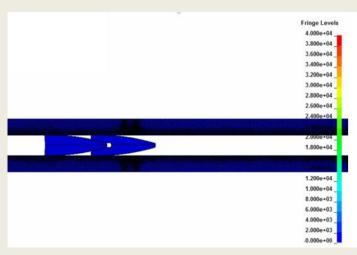
OBJECTIVE

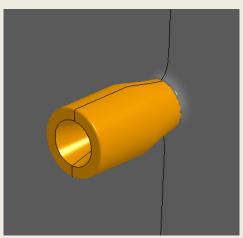
ARDEC must remain a step ahead of the emerging/evolving threat spectrum through superior armament design

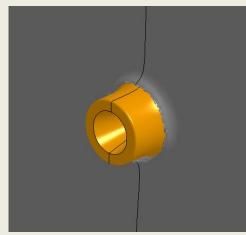
ARDEC Armament Evolution


- Leverage of historical data and concepts
- Iterative design process
 - Cutting edge modeling & simulation
 - Extensive testing, state-of-the-art data acquisition equipment

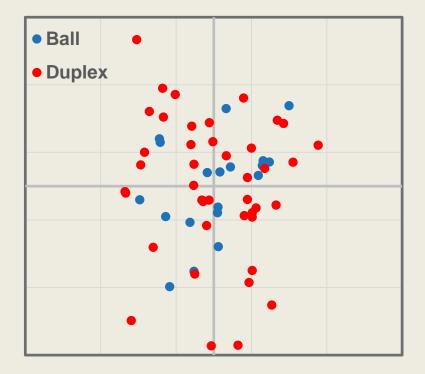





Modeling & Simulation


- Aeroballistics
- In-Bore
- Terminal

Velocity (ft/s) vs. Range (m)



Testing

- EPVAT
- High-Speed Video
- Radar
- Electronic Accuracy Scoring

ARDEC Armament Evolution

- → Scalable multiplex cartridge technology
- → Proven performance benefits

ARDEC Armament Evolution

Performance Benefits:

- Increased P_(h) → Increased P_(i)
- Lower collateral damage
- Increased threat suppression
- Smaller Surface Danger Zone (SDZ)
 - Enhances useable battlespace
 - Allows for more training range options
- Scalable technology allows for use in various weapon systems
- Reconfigurable technology allows for mission adaption

CONTACT INFORMATION

QUESTIONS?

Christopher Parisi

ARDEC Project Officer
US Army ARDEC
Bldg 65N

Picatinny Arsenal, NJ 07806

christopher.c.parisi.civ@mail.mil

973-724-9878