NDIA Armaments Forum
Indianapolis, Indiana
Analysis of 25mm PGU-47 APHEI-T Projectile
Against Wall Targets

Presented by

Jim McConkie
NSWCDD, E33

7-10 May 2018
Outline

• Analysis Approach
• Test Description
 – Test Data Deficiencies
• ZDATA Construction
 – PMAT Tool
• WarheadView
 – Program Description
 – Probability Of Incapacitation
 – Personnel Model
 – Target Configuration
 – Analysis Description
• Results
• Summary
Analysis Approach

• Assemble warhead characterization file (ZDATA) for each test shot
 – Obtain projectile fragment impact data from E40
 – Determine fragment mass for non-recovered fragments using PMAT
 – Determine impact velocity using velocity screen data or PMAT
 – Compute fragment initial conditions based on impact state and estimated average drag coefficient

• Use WarheadView to compute probability of incapacitation (P_{inc}) of projectile fragments for a matrix of personnel targets
 – 46 personnel targets located in 16x16-foot room
 – Projectile impact point on wall varied using a grid of 468 points
 – Serious and Lethal wounding casualty criteria used
 • Include summer uniform fragment velocity cut-off
Test Description

- Wall target placed in front of 12x16x8-foot plywood room
 - Brick-over-block wall
 - Concrete Masonry wall
- Fragment impact locations on plywood sheets were recorded
- Velocity screens covered back wall and both side walls
- Projectile: PGU-47/U
Wall Targets

Brick-over-Block

Concrete Masonry Unit
ZDATA Construction

- Fragment polar angle and azimuth angle determined from fragment impact location (relative to burst point)
- Fragment impact velocity:
 - For fragments that completely perforated the plywood (non-recovered), velocity screen data was used
 - Otherwise, the lower of velocity screen or PMAT value was used
 - JTCG drag curve used to compute initial velocity
- Fragment mass:
 - Mass was measured for all recovered fragments
 - Otherwise, use PMAT to estimate mass
- Fragment shape assumed to be irregular
- Used ETB format for ZDATA file
 - Allows deterministic analysis
 - Standard JTCG ZDATA format could be constructed if desired
PMAT Tool

- Computes fragment mass and impact velocity based on size of hole in plywood (L,W,D)
 - Four fragment material options (steel, tungsten, etc.)
 - Four fragment shapes

- Fragment hole size measured for all fragments that completely perforated plywood layers

- Program can also compute resulting P_{inc} (not used)
WarheadView Description
Warhead Fragment Trajectory Visualization Program

• Program to visually display the trajectories of warhead fragments resulting from the detonation of single or multiple blast-fragment warheads or projectiles.

• Fragment initial positions and velocities are computed according to the warhead characterization (ZDATA) file and combined with the weapon position and velocity.

• Each fragment trajectory is simulated until impact and includes effects of drag and gravity (JTCG drag curves are used).

• Number of fragment impacts on each target object is recorded and the probability of incapacitation is computed for each hit.

• Multiple weapons against multiple targets can be simulated.
Probability Of Incapacitation

• Probability of incapacitation (P_{inc}) as a function of the number of lethal hits (N_{Lethal}):

$$P_{\text{inc}} = 1 - e^{-N_{\text{Lethal}}}$$

• The number of lethal hits is the summation of the probability of incapacitation ($P_{I/H}$) of each hit, which is computed using the Sperrazza-Kokinakis (S-K) equation:

$$N_{\text{Lethal}} = \sum P_{I/H}$$

$$P_{I/H} = 1 - e^{-a \left(mV^{3/2} - b \right)^n}$$

• Summer uniform velocity cut-off included:

$$V_{50} = \sqrt{kA / M}$$

$$k = (-1.7942 \log M + 7.543) \times 10^6$$

DISTRIBUTION A. Approved for public release: distribution unlimited.
Personnel Model
6-Pt Standing Man

- Personnel model divided into six segments
 - Head/Neck
 - Thorax
 - Abdomen
 - Pelvis
 - Arm
 - Leg
- Separate S-K coefficients for each segment
 - Serious wounding
 - Lethal wounding
WarheadView Target Configuration
46 Personnel Targets

16x16-foot room
(Front wall not shown)

Projectile fragment paths

Projectile path

h burst = 2.33 ft
angle = 0.00 deg
velocity = 1365.0 ft/s
Time = 0.021 500

distance = 38.94 ft
azimuth = -16.00
elevation = 32.00
WarheadView Analysis

- Projectile impact point varied across height and width of front wall
 - Horizontal: -7 to +7 feet, every 0.4 feet
 - Vertical: 1 to 7 feet, every 0.5 feet

- Probability of incapacitation (P_{inc}) computed for each personnel target
 - Serious wounding criteria
 - Lethal wounding criteria

- For each impact point:
 - Average P_{inc} of all personnel targets
 - Maximum P_{inc} for all personnel targets

- 8 test shots analyzed
 - Shots 2, 4, 10, 12 (Brick-over-block wall)
 - Shots 5, 8, 13, 14 (Concrete masonry wall)
• Average P_{inc} of all personnel targets:
 – This is the expected value of P_{inc} for a single projectile against a single personnel located at a random point in the room
 – The reported average value (in the summary table) is the average for all personnel and all impact points
 • This includes the assumption that the projectile impact point is random and uniformly distributed on the wall
 – The power-rule could be used to combine the average P_{inc} in order to get a corresponding value for multiple shots
 – The maximum value of average-P_{inc} (included with plots) represents the best-case impact point (for a single personnel at a random location)

• Maximum P_{inc} for all personnel targets:
 – The reported value represents the maximum across all personnel and all impact points
 – This is the best-case P_{inc} for a single projectile against a single personnel in the room (at the best-case impact location)
Summary of Test Shots
PGU-47/U

<table>
<thead>
<tr>
<th>Shot</th>
<th>Wall Target</th>
<th>Type</th>
<th>Angle</th>
<th>Velocity (ft/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Brick</td>
<td>PGU-47</td>
<td>0</td>
<td>3086.9</td>
</tr>
<tr>
<td>3</td>
<td>Brick</td>
<td>PGU-47</td>
<td>0</td>
<td>1993.1</td>
</tr>
<tr>
<td>4</td>
<td>Brick</td>
<td>PGU-47</td>
<td>0</td>
<td>3104.0</td>
</tr>
<tr>
<td>5</td>
<td>CMU</td>
<td>PGU-47</td>
<td>0</td>
<td>3113.5</td>
</tr>
<tr>
<td>8</td>
<td>CMU</td>
<td>PGU-47</td>
<td>0</td>
<td>2128.3</td>
</tr>
<tr>
<td>9</td>
<td>Brick</td>
<td>PGU-47</td>
<td>0</td>
<td>2181.1</td>
</tr>
<tr>
<td>10</td>
<td>Brick</td>
<td>PGU-47</td>
<td>0</td>
<td>3100.1</td>
</tr>
<tr>
<td>11</td>
<td>Brick</td>
<td>PGU-47</td>
<td>45°</td>
<td>1943.2</td>
</tr>
<tr>
<td>12</td>
<td>Brick</td>
<td>PGU-47</td>
<td>45°</td>
<td>3110.9</td>
</tr>
<tr>
<td>13</td>
<td>CMU</td>
<td>PGU-47</td>
<td>45°</td>
<td>1955.1</td>
</tr>
<tr>
<td>14</td>
<td>CMU</td>
<td>PGU-47</td>
<td>45°</td>
<td>3105.6</td>
</tr>
</tbody>
</table>
Fragment Trajectories: Shot 5

Fragment trajectory simulations in WarheadView
Summary of Test Shots and Results
PGU-47/U

DISTRIBUTION A. Approved for public release: distribution unlimited.
Summary

- Eight PGU-47 25-mm shots analyzed
 - Four against brick-over-block walls
 - Four against concrete masonry unit walls
- Projectile fragment mass and velocities were directly measured or estimated from PMAT
 - For Shots 4 & 12 – only the penetrator was recorded as penetrating the brick-over-block wall and thru the witness room wall. The Fragmentation was trapped in the wall.
- Average and maximum P_{inc} computed for matrix of personnel targets
- Significant difference observed in P_{inc} between brick wall and concrete masonry (CMU) wall
 - Impact/penetration of CMU wall produced large numbers of fragments, resulting in much higher P_{inc} values
Questions