A Strategy for the Cost Effective Acceleration of DoD Weapon Systems

Earl Wyatt
E. Wyatt & Associates Consulting
8 March 2017
Consistent Conference Themes

• Supporting Rapid Acquisition Through the T&E Lens
 • Strategic Collaboration to Accelerate Acquisition
 • Capabilities-based T&E
 • Role of Modeling & Simulation

• Challenges
 • System of Systems
 • Security
 • Asset Availability
 • Resources
 • Focused Live Testing
Computational Prototyping Environments
or
Computational Decision Support Environments
Computational Prototyping Environments
or
Computational Decision Support Environments

- Consistent with SecDef’s Defense Innovation Initiative and key enabler for the 3rd Offset Strategy
 - Senior leadership decision support, war-gaming, novel concepts, innovative business practices and DIUx
 - Quantity at cost, effects at range, and autonomy
Computational Prototyping Environments
or
Computational Decision Support Environments

• Consistent with SecDef’s Defense Innovation Initiative and key enabler for the 3rd Offset Strategy
 • Senior leadership decision support, war-gaming, novel concepts, innovative business practices and DIUx
 • Quantity at cost, effects at range, and autonomy

• Consistent with DASD DT&E Vision for a Virtual Proving Ground
 • Conduct developmental test of the design before ever bending metal
Computational Prototyping Environments
or
Computational Decision Support Environments

- Consistent with SecDef’s Defense Innovation Initiative and key enabler for the 3rd Offset Strategy
 - Senior leadership decision support, war-gaming, novel concepts, innovative business practices and DIUx
 - Quantity at cost, effects at range, and autonomy

- Consistent with DASD DT&E Vision for a Virtual Proving Ground
 - Conduct developmental test of the design before ever bending metal

- Established to enable resilient, cost effective war-winning capability, in an accelerated timeline.
 Typically comprised of following capabilities/components
 - Trade-space analysis, environment representation, collaborative analysis and knowledge management, and capability integration and demonstration
Computational Prototyping Environments
or
Computational Decision Support Environments

• Consistent with SecDef’s Defense Innovation Initiative and key enabler for the 3rd Offset Strategy
 • Senior leadership decision support, war-gaming, novel concepts, innovative business practices and DIUx
 • Quantity at cost, effects at range, and autonomy

• Consistent with DASD DT&E Vision for a Virtual Proving Ground
 • Conduct developmental test of the design before ever bending metal

• Established to enable resilient, cost effective war-winning capability, in an accelerated timeline. Typically comprised of following capabilities/components
 • Trade-space analysis, environment representation, collaborative analysis and knowledge management, and capability integration and demonstration

• Enables comprehensive characterization of system design, expected performance, and cost
Computational Prototyping Environments
or
Computational Decision Support Environments

• Facilitates collaboration across the Research, Engineering, Acquisition, and T&E communities
 • Gov-industry use of high performance computing centers and OSD Engineered Resilient Systems Program (ERS) developed physics based models, linked via DREN will enable fast and efficient workflow automation
 • Addresses capability to include CONOPs, system, target infrastructure, and man-machine interface before ever bending metal or laying any composites
Computational Prototyping Environments
or
Computational Decision Support Environments

• Facilitates collaboration across the Research, Engineering, Acquisition, and T&E communities
 • Gov-industry use of high performance computing centers and OSD Engineered Resilient Systems Program (ERS) developed physics based models, linked via DREN will enable fast and efficient workflow automation
 • Addresses capability to include CONOPs, system, target infrastructure, and man-machine interface before ever bending metal or laying any composites

• Integral to the DoD’s Tiered Strategy for Modeling and Simulation (M&S) which will link physics based system models with mission level and campaign level models to determine overall effectiveness
Computational Prototyping Environments
or
Computational Decision Support Environments

• Facilitates collaboration across the Research, Engineering, Acquisition, and T&E communities
 • Gov-industry use of high performance computing centers and OSD Engineered Resilient Systems Program (ERS) developed physics based models, linked via DREN will enable fast and efficient workflow automation
 • Addresses capability to include CONOPs, system, target infrastructure, and man-machine interface before ever bending metal or laying any composites

• Integral to the DoD’s Tiered Strategy for Modeling and Simulation (M&S) which will link physics based system models with mission level and campaign level models to determine overall effectiveness

• Offers cost effective means to address complexity of system of system architectures and interfaces/ conduct secure system of system assessments/ offers reduced order modeling of supporting campaign assets to offset challenges of availability/ helps determine what specific aspects of the design to prototype and what areas of live testing should to be executed