Space and Missile Systems Center

Military GPS User Equipment Modernization

NDIA
20th Annual Systems Engineering Conference

Col Ed Hospodar
Chief, GPS User Equipment Division
Global Positioning Systems Directorate
1966 Aerospace Corporation “Navigation Satellite Study”

RANGE AND RANGE DIFFERENCE SYSTEMS

<table>
<thead>
<tr>
<th>Location of Computation</th>
<th>Computation Performed by User</th>
<th>Computation Performed by Ground Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation Radio Link</td>
<td>2 Way</td>
<td>1 Way</td>
</tr>
<tr>
<td>User Equipment</td>
<td>USER</td>
<td>USER</td>
</tr>
<tr>
<td>R = Receiver</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>T = Transmitter</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>X = Crystal Clock</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A = Atomic Clock</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>C = Computer</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Applicable Measurements</td>
<td>2 Sats ppa</td>
<td>3 Sats ppp</td>
</tr>
<tr>
<td></td>
<td>3 Sats Δpapa</td>
<td>4 Sats Δpapa</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>User Active</td>
<td>USER PASSIVE</td>
<td>USER ACTIVE</td>
</tr>
<tr>
<td>User Passive</td>
<td>USER</td>
<td>USER</td>
</tr>
</tbody>
</table>

- **1-way ranges, passive receivers, crystal oscillators**
- **Passive (one-way) reduces UE power and avoids detection**
- **Internal computer spreads the burden for 1,000’s of users and avoids sending measurements**
- **Crystal oscillator minimizes UE SWAP-C and doesn’t hurt accuracy**
- **Autonomous receivers**

\[\text{SWAP-C} = \text{Size, Weight, and Power - Cost}\]

The widespread use of GPS and duplication by all other GNSS validate these choices
GPS Overview

Civil Cooperation
- 3+ Billion civil & commercial users worldwide
- Search and Rescue
- Civil Signals
 - L1 C/A (Original Signal)
 - L2C (2nd Civil Signal)
 - L5 (Aviation Safety of Life)
 - L1C (International)

Department of Defense
- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOM
- GPS Partnership Council

International Cooperation
- 57 Authorized Allied Users
 - 25+ Years of Cooperation

Spectrum
- World Radio Conference
- International Telecommunication Union
- Bilateral Agreements
- Adjacent Band Interference

Department of Transportation
- Federal Aviation Administration

Department of Homeland Security
- U.S. Coast Guard

Maintenance/Security
- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Annually
 - Public ICWG: Worldwide Involvement
 - Materials Available at: gps.gov/technical/icwg
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World
 - 120 for US and 90 for GNSS

35 Satellites / 31 Set Healthy
Baseline Constellation: 24 Satellites

<table>
<thead>
<tr>
<th>Satellite Block</th>
<th>Quantity</th>
<th>Average Age</th>
<th>Oldest</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS IIR</td>
<td>12</td>
<td>15.7</td>
<td>20.1</td>
</tr>
<tr>
<td>GPS IIR-M</td>
<td>7</td>
<td>10.1</td>
<td>11.9</td>
</tr>
<tr>
<td>GPS IIF</td>
<td>12</td>
<td>3.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Constellation</td>
<td>31</td>
<td>9.7</td>
<td>20.1</td>
</tr>
</tbody>
</table>

AS OF 1 SEP 17

35 Satellites / 31 Set Healthy
GPS Modernization

Space System (Satellites)

- **Legacy (GPS IIA/IIR)**
 - Basic GPS
 - NUDET (Nuclear Detonation) Detection System (NDS)

- **GPS IIR-M**
 - 2nd Civil signal (L2C)
 - New Military signal
 - Increased Anti-Jam power

- **GPS IIF**
 - 3rd Civil Signal (L5)
 - Longer Life
 - Better Clocks

- **GPS III (SV01-10)**
 - Accuracy & Power
 - Increased Anti-Jam power
 - Inherent Signal Integrity
 - Common L1C Signal
 - Longer Life

- **GPS III (SV11+)**
 - Unified S-Band Telemetry, Tracking & Commanding
 - Search & Rescue (SAR) Payload
 - Laser Retroreflector Array
 - Redesigned NDS Payload
 - Regional Military Protect (RMP)

Ground System

- **Legacy (OCS)**
 - Mainframe System
 - Command & Control
 - Signal Monitoring

- **AEP**
 - Distributed Architecture
 - Increased Signal Monitoring Coverage
 - Security
 - Accuracy
 - Launch And Disposal Operations

- **OCX Block 0**
 - GPS III Launch & Checkout

- **GPS III Contingency Ops (COps)**
 - GPS III Mission on AEP

- **M-Code Early Use (MCEU)**
 - Operational M-Code on AEP

- **OCX Block 1**
 - Fly Constellation & GPS III
 - Begin New Signal Control
 - Upgraded Information Assurance

- **OCX Block 2+**
 - Control all signals
 - Capability On-Ramps
 - GPS III Evolution

User Equipment System (Receivers)

- **Legacy (PLGR/GAS-1/MAGR)**
 - First Generation System

- **User Equipment**
 - Improved Anti-Jam & Systems
 - Reduced Size, Weight & Power

- **Upgraded Antennas**
 - Improved Anti-Jam Antennas

- **Modernized**
 - M-Code Receivers
 - Common GPS Modules
 - Increased Access/ Power with M-Code
 - Increased Accuracy
 - Increased Availability
 - Increased Anti-Tamper/ Anti-Spoof
 - Increased Acquisition in Jamming
Military GPS User Equipment (MGUE)

- Commercial market-driven acquisition approach
- Three vendors developing modernized receiver cards
 - Ground form factor
 - Aviation/Maritime form factor
- Current Status
 - L-3 Technologies first to receive security certification Oct 2016
 - Developmental testing ongoing
 - Conducting early integration activities to support Service-nominated Lead Platforms
Military GPS User Equipment
Prototype GPS Receiver Flight Tested on B-2

Prototype Military GPS User Equipment Receiver Card

Prototype Miniaturized Airborne GPS Receiver

4 Successful B-2 Test Flights

Military GPS User Equipment Demonstrated in B-2
MGUE Precision Guided Munitions Test

MGUE INCREMENT 1 FIRST EVER GUIDE-TO-HIT
Looking Ahead: Multi-GNSS
• GPS is the Global Utility
 – Commited to maintaining uninterrupted service
 – “The Gold Standard”
• Modernizing to enhance GPS resiliency by:
 – Upgrading all three segments
 – Moving to M-Code
 – Adding civil signals
• Exploring multi-GNSS potential