Overview

1. Genesis CFD

2. Sample Curriculum

3. Examples
 - Supersonic Airfoil
 - Transonic Wing
Genesis-CFD Components/Capabilities

- Single Mesh Unstructured Solver
 - Euler/Laminar/RANS/DES
 - Ideal Gas
 - Limited cores per job (128-256)
- Motion
 - Prescribed (including arbitrary)
 - 6-DOF without constraints
- Structures
 - Modal solver
- Plugins useable, but without SDK to develop

- Propulsion
 - 0-D Linear engine model for BC’s
 - Rotating reference frame
 - Sliding interfaces

- Visualization features
 - Full Volume write to Tecplot, FieldView, Ensight
 - Extracts for FieldViewXDB, Silo, Tecplot, VTK
 - In-Situ using VisIt

Distribution Statement A.
Sample Curriculum

- **Core courses**
 - Fluids I (Incompressible)
 - Fluids II (Compressible)
 - Experimental Methods / Labs

- **Electives**
 - Applied CFD
 - Propulsion
Lectures – Use canned CFD solutions for illustration (cylinder, sphere, airfoil),examples

- Langrangian derivative terms on a cylinder, e.g. \(\nu \frac{\partial u}{\partial y} \)
- Fluid “particle” deformation types (e.g. angular/linear deformation, rotation, strain, volume dilatation).
- Gradients (e.g. pressure)
- Steady vs. Unsteady
- Streamlines, Streaklines, Pathlines
Sample Curriculum - Fluids

- Lectures – Use canned CFD solutions for illustration (cylinder, sphere, airfoil), examples
 - Langrangian derivative terms on a cylinder, e.g. $\nu \frac{\partial u}{\partial y}$
 - Fluid “particle” deformation types (e.g. angular/linear deformation, rotation, strain, volume dilation).
 - Gradients (e.g. pressure)
 - Steady vs. Unsteady
 - Streamlines, Streaklines, Pathlines
Sample Curriculum - Fluids

- Lectures – Use canned CFD solutions for illustration (cylinder, sphere, airfoil), examples
 - Langrangian derivative terms on a cylinder, e.g. $\nu \frac{\partial u}{\partial y}$
 - Fluid “particle” deformation types (e.g. angular/linear deformation, rotation, strain, volume dilatation).
 - Gradients (e.g. pressure)
 - Steady vs. Unsteady
 - Streamlines, Streaklines, Pathlines

- Basics of CFD (1-2 lectures)
 - Show simple model problem (1-D linear convection, burgers eqn)
 - Finite difference derivation from Taylor series. Order of accuracy
 - Explicit vs. implicit
 - When to use CFD vs. potential based methods

- CFD project (sphere at various Re)
 - Simple geometry or provide meshes
 - Grid and/or timestep refinement
 - Comparison to experimental data
Experiment/Lab course
- Subset of students provide CFD support
- Possible uses of CFD:
 - Analyze wind tunnel wall effects
 - Visualize the flow being measured
 - Test validity of CFD

Propulsion
- Single Stage Analysis using rotating reference frame and sliding interfaces
- Inlet losses using Engine boundary condition

Design
- CFD of final designs using DaVinci
- Verify performance
- More advanced - look at dynamic stability derivatives
Examples - Diamond Airfoil

- **Description:**
 - Fluids II
 - Student project or as a lecture aid
 - Slow oscillating pitch motion to show effect of α

- **Time:**
 - Meshing: 15 minutes
 - Job Setup: 10 minutes
 - Post-processing: 30 minutes

Mach over Diamond Airfoil at Mach=2.0, $\alpha = \pm 10\, \text{deg}$
Examples - Diamond Airfoil

- Description:
 - Fluids II
 - Student project or as a lecture aid
 - Slow oscillating pitch motion to show effect of α

- Time:
 - Meshing: 15 minutes
 - Job Setup: 10 minutes
 - Post-processing: 30 minutes

Pressure over Diamond Airfoil at Mach=2.0, $\alpha = \pm 10$ deg
Examples - Onera M6

- Description:
 - Fluids II
 - Student project or as a lecture aid
 - Shows transonic effects
- Time:
 - Meshing: Provided
 - Job Setup: 10 minutes
 - Post-processing: 30-60 minutes

Mach cutting plane with surface pressure on OneraM6 wing.