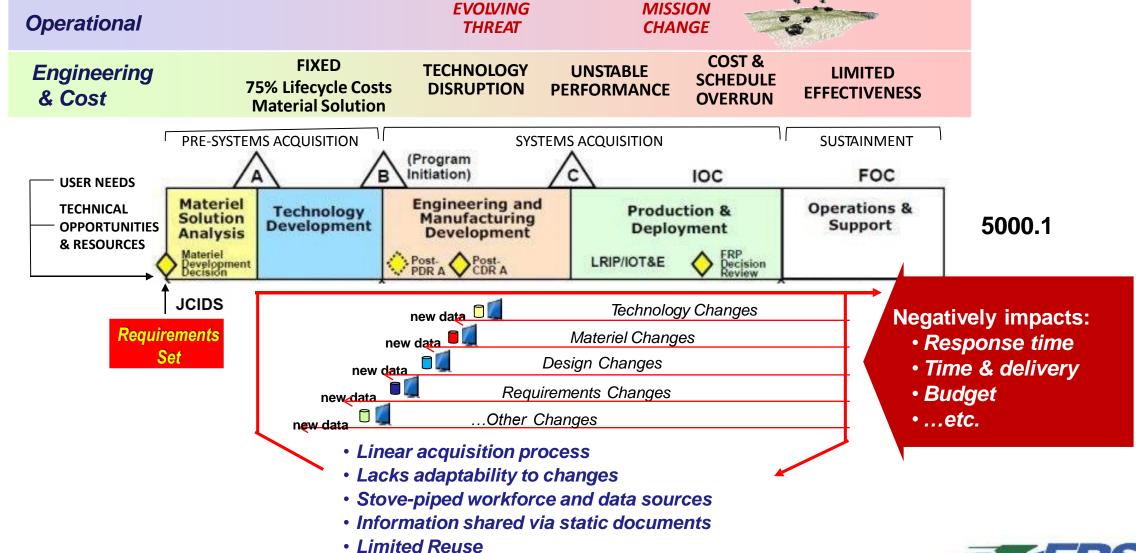


Engineered Resilient Systems Advanced Analytics and Modeling in Support of Acquisition

David R. Richards

Lead Technical Director for ERS

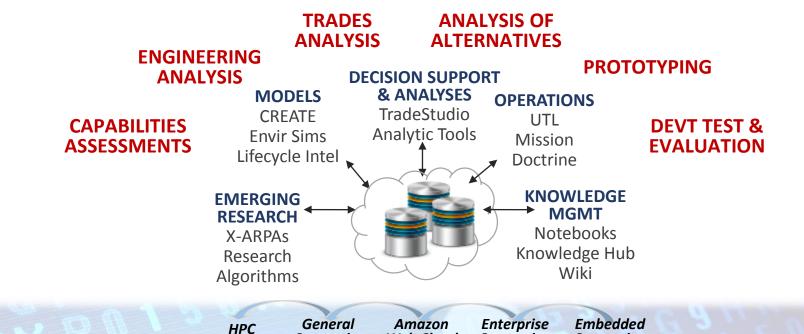

US Army Engineer Research and Development Center (ERDC)

Research and Development, US Army Corps of Engineers

Historic Acquisition Process

ERS Leverages Years of Major DoD S&T Investments

SIMULATION



COMPUTING

OPEN & TRUSTED SYSTEMS

Computing

Web Cloud

Computing

Computing

Components of the ERS Design Environment

...ilities

other

ARCHITECTURE Better Buying Power 3.0 TRADE ANALYSIS ADVANCED MODELING **ENV REPRESENTATION** MISSION CONTEXT

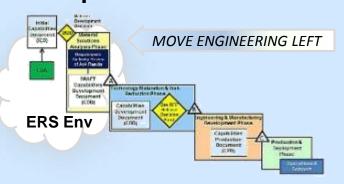
ERS Cloud

10.000X **Productivity** *Improvement* In AoA

HPCMP & S&T Resources

Integrated Capability and Workflow

Decision Support


Big Data Analytics & Visualization

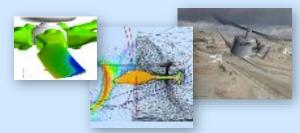
Open Architecture

Knowledge Mamt

Data Retention

Requirements Generation

Fully Explore & Identify KPPs

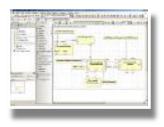

Analysis of Alternatives

Reduces alternatives from thousands to tens or less

Rapidly Analyze Many More Alternatives

Virtual Prototyping & Evaluation

RAPID PROTOTYPING & RESPONSE Virtual Warfighting, Reduce **Prototyping Time & Costs**


ERS Workflow

Requirements and Systems Modeling

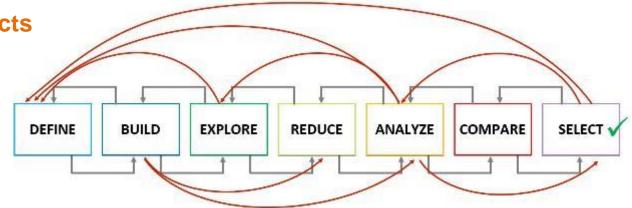
Requirements and system concepts are captured in SysML.

SysML models are refined to include the baseline design, performance metrics, models, and methods to create the tradespace.

Tradespace Creation

- High-fidelity models assess performance aspects of the system.
- Parameter sweeps introduce design variations into the tradespace.
- Performance and effectiveness metrics are identified and assessed on each design.

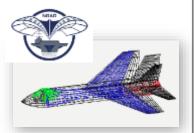
Tradespace Analysis


Collaborative and interactive tradespace exploration

Save data and decisions for future analyses

Major ERS System Engineering Products

- ERS System Architecture
- Conceptual Model Builder
- Engineering Notebooks
- ERS TradeStudio
- Big Data Analytics & Visualization
- Environmental Simulation


ERS Transition to Acquisition Community

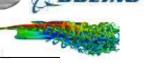
NGAD AoA Tool Enhancements

- AoA support
- HPC CREATE tools
- Tradespace tool enhancements

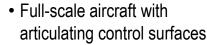
Submarine Virginia-class replacement

- Early-stage submarine design
- ERS trades analysis

Currently Developing ERS-supported Advanced Design Space Exploration (DSE)



US Army AMRDEC/TARDEC


ERS Rotorcraft Design Adaptation

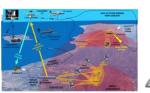
CH-47 rotor blade __ improvement;

Gray Eagle flight performance predictions

 Trade & evaluate aircraft modification impact

Kestrel CFD Model Built [CREATE-AV] from scanned model

LRV Tradespace Expanded Design


Expanded tradespace resulted in new design concept

US Air Force AFLCMC/AFRL

Low Cost Attritable Aircraft Technology

- **Prototype**
- Developing integrated toolset for rapid design creation
- Ability to trade many new designs rapidly
- Understanding conceptual design via advanced tradespace analytics and physics-based computations.

ERS Technical Team & Partners

Technical Team

Engineer Research and Development Center (ERDC)

BAE SYSTEMS

Naval Sea Systems Command (NAVSEA)

Army

Research

Laboratory

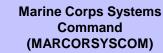
(ARL)

Arnold Engineering Development Center (AEDC)

Air Force Research Lab (AFRL)

Naval Undersea Warfare Center (NUWC)

Naval Research Laboratory (NRL)


Air Force Life
Cycle
Management
Center
(AFLCMC)

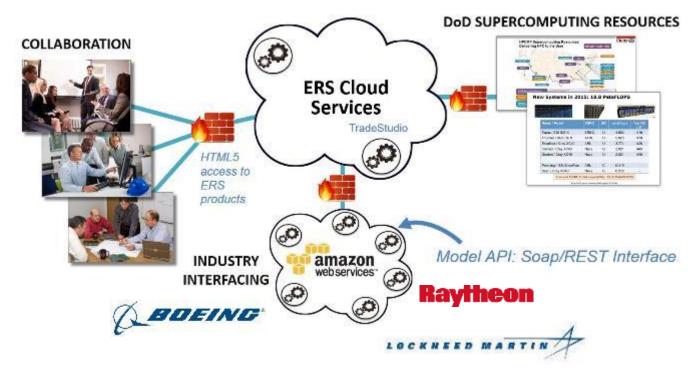
Programs, Industry, & Academic Organizations

Partnering with and Leveraging Key Program Executive Offices (PEOs),
Program Managers (PMs), Industry and Academia

Connecting with Industry Partners

INDUSTRY IS KEY TO ERS

Industry connection to ERS tools and technologies is critical to success and acquisition reform


IP PROTECTION IS CRITICAL

Protection of Intellectual Property is provided via privately controlled Amazon Web Services

SECURITY ASSURANCE

Data in motion and at rest is protected via the ERS security architecture.

CURRENT EXPERIMENTATION

- Use 3rd party web service (such as AWS, Microsoft Azure, Google, etc.)
- Contractor info hosted / secured on 3rd Party system
- Government pulls from web service as needed

ERS Architecture Working Group Government, Industry & Academia – Active Engagement

Industry Partners are formally engaged in ERS development.

Government-Industry-Academia Architecture Working Group

Nov. 18-19, 2015
Software Engineering Institute

August 24-25, 2016 ERDC ITL

Amazon Web Services Workshop

August 5-6, 2016 ERDC ITL

2017 Industry Workshop planned: Business Processes, Technology Challenges

Digital Engineering Concept

COMPUTATIONAL PROTOTYPING ENVIRONMENT

CONCEPTUAL ANALYTICS

 \rightarrow

REFINED ANALYTICS

 \rightarrow

BUILD & TEST

 \rightarrow

PRODUCE

ENGINEERED RESILIENT SYSTEMS

DIGITAL THREAD

COMPUTATIONAL PROTOTYPING

PHYSICAL PROTOTYPING

MANUFACTURE

DIGITAL TWIN

Data Storage

Search

Rapid Retrieval

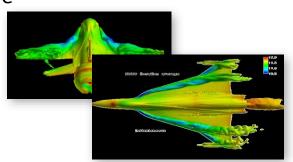
Lessons Learned

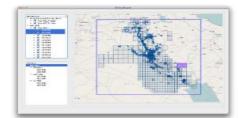
Knowledge Management

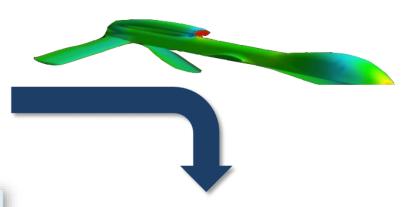
Security Classification Capability

Basis of Computational Prototyping Environment

Engineered Resilient Systems


- Architectural Integration
- Tradespace Analysis
- Environmental Simulation
- Big Data Analytics
- Knowledge Management


AFSIM, SIMAF, EAAGLES, JSE,

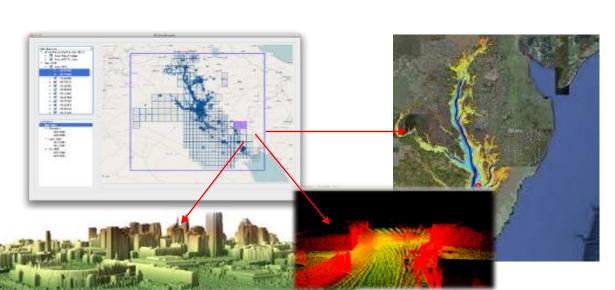

Digital Thread, Digital Twin

CREATE

- High-Performance Computing
- High-Fidelity Computational Physics
- AV, Ships, GV, RF, MG
- Future Possibilities in Space and Electronic Warfare

Computational Prototyping Environment

- Virtual Proving Ground for T&E
- Generic Workflow Automation for Army Platforms
- High-Fidelity Physics Supporting Tradespace Analysis
- 3D Physics-Informed, Gaming-Based Visualization



DoD Computational Prototyping

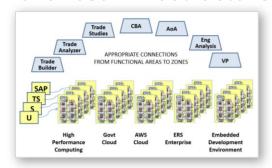
Key Features of the CPE

- Complement and reduce reliance on physical experimentation
- Fast, accurate compute before bending metal
- Consider vast array of factors
- Understand and mitigate systems risk
- Inverse modeling to understand how to defeat concepts

Mission Location

Physics-based Models & Simulations

Physical Environment



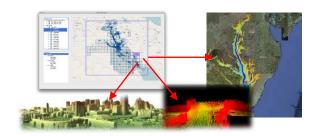
S&T Work Remains

Advanced Infrastructure

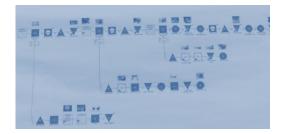
Computing infrastructure tailored to ERS-based decision making for all data classification levels

Workflow Automation

Automated workflows *over multiple critical domains*, in multiple security levels


Critical S&T Focus Areas

Reduced Order Modeling


Need to incorporate techniques to reduce the computational complexity of high-physics models to reduce training time for all classes of users.

Environmental Simulation

Rigorous capability to provide computational environmental conditions to the warfighter anywhere in the world

Cost Modeling

ERS does not have a formal approach to cost modeling

Closing Comments

- ERS Technologies are undergoing rapid development and are currently being used to support real acquisition decisions.
- Government, Industry and Academic partners are developing and using these tools.
- Computational prototyping is necessary to achieve acquisition reform
- S&T challenges remain

NDIA Conferences (Engineering Systems and Science) 2012, 2014, 2015, 2016, 2017

Industry has contributed greatly to the development of ERS. Future partnerships on real, acquisition tasks are critical.

Questions

