

Improving Transition: Modular Open Systems Approach (MOSA) & Engineering Enablers

Mr. Robert Gold Director, Engineering Enterprise Office of the Deputy Assistant Secretary of Defense for Systems Engineering (ODASD(SE))

19th Annual NDIA Systems Engineering Conference Springfield, VA | October 26, 2016

19th NDIA SE Conference 10/26/2016 | Page-1

Distribution Statement A – Approved for public release by DOPSR. Case # 17-S-1199 applies. Distribution is unlimited.

- MOSA is not an all or nothing proposition
 - Must tailor approach to expected MOSA outcomes
 - Permeates all aspects of systems engineering
 - Requires design trades based on near-term and long-term cost benefit
- MOSA is more than just defining architectures and selecting standards
 - Technical community
 - Business relationships

• Governance and leadership matter

- Top cover for individual programs to succeed
- Leadership and engineering where necessary across multiple programs

Industry must be an able and willing partner

– Design decisions, documentation, specifications, interfaces, tools, etc.

- Today's systems are complex in: size, interactions <u>between</u> components and subcomponents, and external interactions
- The <u>appropriate use of modular design techniques</u> and open systems standards can achieve the 5 MOSA benefits

Modular Open Systems Approaches

Supporting the goals for MOSA implementation are methods, processes and tools which underpin the approach

19th NDIA SE Conference 10/26/2016 | Page-4

Improve Interoperability

Begin with the MOSA End Goal in Mind

Enable systems (and software applications) to access
 and provide data + services using (open) interface
 definitions between components

Program Objectives

- Operational flexibility to support reconfigurable product configurations of existing capabilities to counter threats or enable different missions
- Share and exchange data consistently between components (and system stakeholders) using defined data models

Flexible Interchangeable Reconfigurable Supportable Open Definitions Loose Coupling

19th NDIA SE Conference 10/26/2016 | Page-5

Enable Tech Refresh

- Begin with the MOSA End Goal in Mind
- Enable periodic upgrades of technology to assure system supportability

Program Objectives

- Enable technical flexibility for rapid and effective system upgrades
- Upgrade technology without changing all components in the entire system

Flexible Upgradeable Severable Replaceable Adaptable Loose Coupling

Increase Competition

Begin with the MOSA End Goal in Mind

GOAL – Prevent vendor lock and increase options for replacement/refresh

Program Objectives

- Platform and vendor independence when hardware (and software) implement open industry standards
- Ability to openly compete severable modules
- Compete portable components with open (specifications or standards for interfaces, services, and supporting formats) across a wide range of systems from one or more suppliers

Flexible

Reconfigurable

Severable

Open Definitions

Loose Coupling

Incorporate Innovation

Begin with the MOSA End Goal in Mind

- **GOAL** Insert capabilities that provide technological innovation to the warfighter
 - Use business practices that encourage the relevant technical community to develop and insert new technologies

Program Objectives

- Take advantage of new advancements in technology
- Enable technical agility to meet rapidly changing requirements

Improve Cost Savings/Avoidance

19th NDIA SE Conference 10/26/2016 | Page-9

- Define modularity and openness (technical and programmatic) in the context of an ecosystem
- Address MOSA for component obsolescence and cases where there is a loss of critical suppliers
- Address how to plan for technology insertion and upgrades in tightly coupled, highly integrated systems
- Quantify the costs, benefits, and risks of MOSA across multiple dimensions (e.g. using tradespace exploration)
- Map beneficial elements of MOSA strategies to appropriate acquisition processes that encourage adoption
- Implement FY17 National Defense Authorization Act Sections 805-809

Acquisition Agility 2017 NDAA Sections 805-809

• Improve our ability to evolve weapon systems

- Requirement documents designate where Major Defense
 Acquisition Programs (MDAPs) should evolve to meet changing threats, enhance interoperability, and rapidly employ new tech
- (MDAPs) use MOSA, where practical, to enable that evolution, including cost savings, competition, and technology refresh
- Military Services establish prototyping investments targeted to mature technologies suited to meet program evolution needs
- Independent risk assessments confirm that technical and manufacturing risks are low
- Improve technical data rights, for government purposes, suitable for MOSA
- Reaffirms SECDEF role in establishing cost, schedule, and performance goals for MDAPS
- Establishes new milestone reports to be provided by Milestone
 Decision Authorities to Congress for greater transparency

NDAA FY17 view of Acquisition Agility

Moving From Automation to Autonomy

Automation

limited operator involvement limited to specific actions well-defined tasks predetermined responses

Autonomy

intelligence-based responds in unanticipated situations not pre-programmed self-government self-directed behavior human's proxy for decisions

eering erest (COI) ion (TEVV) Working Group t Strategy

From AFRL Autonomy S&T Strategy Adopted by OSD Autonomy COI TEV&V strategy

E Q

Planes V

SCIENCE

Engineering Challenges In Transitioning Autonomy

Challenge

- Lack of experience in the engineering and acquisition communities
- Inconsistent terminology and expression
- Inability to test and evaluate autonomy
- Need for in-situ T&E
- Lack of comprehensive HSI approaches
- Need for rapid evolution
- Vulnerabilities of computerbased technologies

Opportunity

- Focused experimentation;
 Body of Knowledge, WF
 competencies & training
- Establish ontology and lexicon
- Invest research in SE approaches for testing
- Establish SE practices for in-situ T&E architectures
- Engage HSI community alongside Engineering
- Base functionality in SW & MOSA
- Establish cyber practices for autonomous computing

Autonomy Test, Evaluation, Verification & Validation S&T Goals

- 1. Methods, Metrics, and Tools Assisting in Requirements Development and Analysis:
 - Precise, structured standards to automate requirement evaluation for testability, traceability, and consistency
- 2. Evidence-Based Design and Implementation
 - Assurance of appropriate decisions with traceable evidence at every level to reduce the T&E burden

3. Cumulative Evidence through Research, Development, and Operational Testing:

 Progressive sequential modeling, simulation, test, and evaluation to record, aggregate, leverage, and reuse M&S/T&E results throughout engineering lifecycle

4. Run-time Behavior Prediction and Recovery:

• Real time monitoring, just-in-time prediction, and mitigation of undesired decisions and behaviors

5. Assurance Arguments for Autonomous Systems:

• Reusable assurance case-based on previously evidenced "building blocks"

Systems Engineering: Critical to Defense Acquisition

Defense Innovation Marketplace

http://www.defenseinnovationmarketplace.mil

DASD, Systems Engineering http://www.acq.osd.mil/se