Non-Line-of-Sight Detection

George Pappas

8 August 2017
Agenda

• Person borne IEDs
• Vehicle borne IEDs
• Booby-trapped structures
• Small quantities of explosives
 - e.g., explosives in portable electronics
• Portable power source detection
• Summary
Person Borne IEDs

• Checkpoint
 - Multiple solutions have been developed
 ▪ IR imaging, mm wave imaging, THz imaging, mm wave polarimetry, magnetometry, hyperspectral trace detection, swipe trace detection
 - Issue: What combination of sensors provides the performance, cost, footprint and throughput for any given installation

• Unstructured environment
 - Multiple personnel with different orientations
 ▪ Identify individual and focus sensors
 ▪ Ensure all individuals are examined in all orientations
 - Longer range sensors required

• Sensor for use by dismounts
 - Examine approaching personnel
 - Scan individuals in environment
Vehicle Borne IEDs

• Checkpoint
 - Multiple solutions have been developed
 ▪ Forward and backscatter X-ray systems,
 Vehicle and Cargo Inspection System (VACIS),
 Muon and electron detection, hyperspectral trace
detection systems, Radiation Detectors, Nuclear
Quadrupole Resonance detection
 - Issue: What sensor, or combination of sensors, provides the
 performance, cost, footprint and throughput for any given installation

• Detection during VBIED transit
 - Covert sensors
 ▪ Protection of deployed sensors
 - Tracking vehicles leaving suspicious sites
 - Vehicles avoiding checkpoints
 - Observing driver characteristics (biometrics)
 - Non-lethal vehicle stopping
Booby Trapped Structures

• Examples of types of bobby traps
 - Trip wire initiated explosives, PIR initiated devices, pressure plate under rug, etc.

• Small UAV
 - Mapping single level has been demonstrated
 - Multiple level mapping may be desirable
 - Detecting booby traps from small UAV is difficult

• Small UGV
 - Must be sacrificial
 - Possible equipment
 - Infrared imager
 - Backscatter x-ray
 - Manipulator arm
Small Quantities of Explosives

• Potential problem
 - Insurgent smuggling small quantities of explosives into a facility for later assembly into an IED

• Problems with existing solutions
 - X-ray: does not identify material, only provides shape and indication of approximate atomic weight
 - Swipe: insurgents are likely to understand the necessity of ensuring all surfaces are clean
 - Canine: Packaging to ensure there is no escaping vapor

• Possible solutions
 - Nuclear quadrupole resonance – currently too slow for small quantities but novel antenna can mitigate effect of noise
 - Neutron activation – currently too slow for small quantities, but novel, high flux neutron generator can reduce time to detect
Portable Power Source Detection

- Chemical detection
 - X-ray
 - provides image and
 - relative strength of reflected energy
 - Nuclear Quadrupole Resonance
 - Identifies chemical
 - Cannot penetrate metallic enclosure
 - Neutron activation
 - Identifies chemical
 - Short range and long integration time

- Connecting wire detection
 - 1 m and longer wires are detectable
 - Require techniques to detect shorter wires
Summary

- **JIDO Interest Areas**
 - Novel approaches to detecting PBIEDS in an unstructured environment
 - Man portable, low SWAP sensors for PBIED detection
 - Sensors that can be disguised as part of a city’s infrastructure for scanning driver characteristics or vehicle contents
 - Low SWAP sensors for detecting booby traps
 - Sensors for the detection of small quantities of explosives
 - Sensors for the detection of portable power sources